piquemalresearch.compiquemalresearch.com
  • Home
  • Research & Softwares
  • Publications
  • Collaborators and Friends
  • Present Group, Visitors and Alumni
  • Contact
piquemalresearch.compiquemalresearch.com
  • Home
  • Research & Softwares
  • Publications
  • Collaborators and Friends
  • Present Group, Visitors and Alumni
  • Contact

ANI-2X

FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials

9 months ago 9 months agoJean-Philip PiquemalnewsANI, ANI-2X, machine learning, molecular dynamics, neural networks, Tinker-HP

Check our new paper in the Journal of Chemical Physics FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials T. Plé, O. Adjoua, L. Lagardère, J.-P. Piquemal,...

Continue reading →

0 0 57

Recent Posts

  • VTX: Real-time high-performance molecular structure and dynamics visualization software.
  • Pushing the Accuracy Limit of Foundation Neural Network Models with Quantum Monte Carlo Forces and Path Integrals .
  • A Foundation Model for Accurate Atomistic Simulations in Drug Design
  • Machine Learning for Computational Chemistry
  • Lambda-ABF-OPES: Faster Convergence with High Accuracy in Alchemical Free Energy Calculations

Recent Comments

    Archives

    • May 2025
    • April 2025
    • March 2025
    • December 2024
    • November 2024
    • October 2024
    • August 2024
    • July 2024
    • November 2023
    • August 2023
    • July 2023
    • April 2023
    • February 2023
    • December 2018
    • April 2018
    • January 2018

    Categories

    • news
    • Non classé
    • Softwares

    Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Jean-Philip Piquemal - Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, CC137, 4 Place Jussieu, Tour 12-13, 4ème étage, 75252 Paris Cedex 05, France. E-mail: jean-philip.piquemal at sorbonne-universite.fr Tel : (+33) 1.44.27.25.04