Publications


Bibliometric Indicators
H-index: 58 (58 publications cited >= 58 times: source Google Scholar); 51 (sources: Web of Science(all databases)/Scopus)
I10-index:147 (147 publications cited >= 10 times, source Google Scholar) (Updated : 07/2024)
Total number of publications: 202 including Chemical Review (1), Nature Communications (1),  Accounts of Chemical Research (1), WIREs Comp. Mol. Sci. (3), Ann. Rev. Biophys (1), ACS Cat. (1),  J. Am. Chem. Soc. (4), Chem. Sci. (7), Commun. Phys. (1),  J. Phys. Chem. Lett. (10), J. Chem. Theory. Comput. (40), JCIM(1), Chem. Com.(1),  Front. Mol. Biosci (1), Chem. Euro. J. (2), Front. Chem (1), ChemPhysChem(2), Physical Review Research (1), J. Chem. Phys. (15), J. Comput. Chem. (20), J. Phys. Chem. A/B/C (19), Phys. Chem. Chem. Phys. (3), Physical Review A (1), Int. J. Quant. Chem. (4), Chem. Phys. Lett. (6)…
Updated Citation Metrics/publication list through direct link to Google Scholar
ORCID: 0000-0001-6615-9426

Note: DOI hyperlinks allow to reach the papers’s publisher version. If you do not have a subscription access, ALL my papers are in Free Access either through direct publisher [Open Access], [HAL], NIH Pubmed Central [PMC Free Text] servors or via preprint servors ([ChemRxiv], [Arxiv]…). PDFs are for internal use.

    1. Theoretical study of phenol and 2-Aminophenol docking at a model of tyrosinase active site.
      J-P. Piquemal, J. Maddaluno, B. Silvi, C. Giessner-Prettre, New J. Chem., 2003, 27, 909-913.[PDF][HAL]
      DOI: 10.1039/B210307A
    2. Improved formulas for the calculation of the electrostatic contribution to intermolecular interaction energy from multipolar expansion of the electronic distribution.
      J-P. Piquemal, N. Gresh, C. Giessner-Prettre, J. Phys. Chem. A, 2003, 107, 10353.[PDF][HAL]
      DOI: 10.1021/jp035748t
    3. Inclusion of the ligand field contribution in a polarizable molecular mechanics : SIBFA LF.
      J-P. Piquemal, B. Williams-Hubbard, N. Fey, R.J. Deeth, N.Gresh, C. Giessner-Prettre, J. Comput. Chem., 2003, 24, 1963 [PDF][HAL]
      DOI: 10.1002/jcc.10354
    4. A CSOV Study of the difference between HF and DFT Intermolecular Interaction Energy Values : the importance of the charge transfer contribution.
      J-P. Piquemal, A. Marquez, O. Parisel, C. Giessner-Prettre, J. Comput. Chem. 2005, 26, 1052 [PDF][HAL]
      DOI: 10.1002/jcc.20242
    5. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-b-lactamase by polarizable molecular mechanics. Validation on model binding sites with parallel quantum-chemistry computations.
      J. Antony, J-P. Piquemal, N. Gresh, J. Comput. Chem., 2005, 26, 1131 [PDF][HAL]
      DOI: 10.1002/jcc.20245 
    6. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contribution of the intermolecular interaction energy. Comparisons with parallel ab initio computations.
      N. Gresh, J-P. Piquemal, M. Krauss, J. Comput. Chem., 2005, 26, 1113 [PDF][HAL]
      DOI: 10.1002/jcc.20244
    7. Intermolecular Electrostatic Energies using Density Fitting.
      G. A. Cisneros, J-P. Piquemal, T. A. Darden, J. Chem. Phys., 2005, 123, 044109 [PDF] [HAL]PMC Free Text]
      DOI: 10.1063/1.1947192
    8. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using 4-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (Mn+ = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
      C. Gourlaouen, J-P. Piquemal, T. Saue, O. Parisel, J. Comput. Chem., 2006, 27, 2, 142 [PDF][HAL]
      DOI: 10.1002/jcc.20329 
    9. Towards a Force Field based on Density Fitting.
      J-P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, T. A. Darden,
      J. Chem. Phys., 2006, 124, 104101 [PDF] [HAL][PMC Free Text]
      DOI: 10.1063/1.2173256
    10. Comments on the nature of the bonding in oxygenated dinuclear copper enzymes models.
      J-P. Piquemal, J. Pilmé, J. Mol. Struct.: THEOCHEM, 2006, 764, 77 [PDF] [HAL][PMC Free Text]
      DOI: 10.1016/j.theochem.2006.02.013
    11. Pb(H2O)]2+ and [Pb(OH)]+: four-component DFT calculations, correlated scalar relativistic CSOV energy decompositions, and topological analysis.
      C. Gourlaouen, J-P. Piquemal, O. Parisel, J. Chem. Phys., 2006, 124, 17, 174311 [PDF][HAL]
      DOI: 10.1063/1.2186994
    12. QM/MM Electrostatic Embedding with Continuous and Discrete Functions.
      G. A. Cisneros, J-P. Piquemal, T. A. Darden, J. Phys. Chem. B. , 2006, 110, 13682 [PDF] [HAL][PMC Free Text]
      DOI: 10.1021/jp062768x 
    13. Towards accurate solvation dynamics of divalent cations in water using the polarizable Amoeba force field: from energetics to structure.
      J-P. Piquemal, L. Perera, G. A. Cisneros, P. Ren, L. G. Pedersen, T. A. Darden, J. Chem. Phys., 2006, 125, 054511 [PDF][HAL]
      DOI: 10.1063/1.2234774
    14. Generalization of the Gaussian Electrostatic Model: extension to arbitrary angular momentum, distributed multipoles and speedup with reciprocal space methods.
      G. A. Cisneros, J-P. Piquemal, T. A. Darden, J. Chem. Phys., 2006, 125, 184101 [PDF] [HAL][PMC Free Text]
      DOI: 10.1063/1.2363374
    15. Binding of 5-Phospho-D-Arabinonohydroxamate and 5-Phospho-D-Arabinonate Inhibitors to Zinc Phosphomannose Isomerase from Candida albicans studied by polarizable Molecular Mechanics and Quantum mechanics.
      C. Roux, N. Gresh, L. Perera, J-P Piquemal, L. Salmon, J. Comput. Chem., 2007, 28, 938 [PDF][HAL]
      DOI: 10.1002/jcc.20586
    16. Towards a separate reproduction of the contributions to the Hartree-Fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential.
      J-P Piquemal, H. Chevreau, N. Gresh, J. Chem. Theory. Comput., 2007, 3, 824 [PDF][HAL]
      DOI: 10.1021/ct7000182 
    17. Key role of the polarization anisotropy of water in modeling classical polarizable force fields.
      J-P Piquemal, R. Chelli, P. Procacci, N. Gresh, J. Phys. Chem. A, 2007, 111, 8170 [PDF][HAL]
      DOI: 10.1021/jp072687g 
    18. The Specificity of Acyl Transfer from 2-Mercaptobenzamide Thioesters to the HIV-1 Nucleocapsid Protein.
      L. M. M. Jenkins, T. Hara, S. R. Durell, R. Hayashi, J. K. Inman, J-P Piquemal, N. Gresh, E. Appella, J. Am. Chem. Soc., 2007, 129, 11067 [PDF][HAL]
      DOI: 10.1021/ja071254o 
    19. Anisotropic, polarizable molecular mechanics studies of inter-, intra-molecular interactions, and ligand-macromolecule complexes. A bottom-up strategy.
      N. Gresh, G. A. Cisneros, T. A. Darden, J-P Piquemal, J. Chem. Theory. Comput., 2007, 3, 1960-1986.  [PDF] [HAL][PMC Free Text]
      DOI: 10.1021/ct700134r
    20. Numerical fitting of molecular properties to Hermite Gaussians.
      G. A. Cisneros, D. Elking, J-P Piquemal, T. A. Darden, J. Phys. Chem. A, 2007, 111, 12049.[PDF] [HAL][PMC Free Text]
      DOI: 10.1021/jp074817r
    21. Understanding lead chemistry from topological insights:the transition between holo- and hemidirected structures within the [Pb(CO)n]2+ model series.
      C. Gourlaouen, H. Gérard, J.-P. Piquemal, O. Parisel, 2008, Chem. Eur. J., 14, 2730 [PDF][HAL]
      DOI: 10.1002/chem.200701265 
    22. Advancing beyond Charge Analysis using the Electronic Localization Function: Chemically Intuitive Distribution of Electrostatic Moments.
      J. Pilmé, J-P Piquemal, 2008, J. Comput. Chem., 29, 1440. [PDF][HAL]
      DOI: 10.1002/jcc.20904 
    23. Simple formulas for improved point-charge electrostatics in classical force fields and hybrid Quantum Mechanical/Molecular Mechanical embedding.
      G. A. Cisneros, S. Na-Im Tholander, D. Elking, T. A. Darden, O. Parisel, J-P Piquemal, Int. J. Quant. Chem., 2008, 108, 1905.[PDF] [HAL][PMC Free Text]
      DOI: 10.1002/qua.21675 
    24. What can be learnt on biological or biomimetic systems with the topological analysis of the electron localization function?
      J-P Piquemal, J. Pilmé, O. Parisel, H. Gérard, I. Fourré, J. Bergès, C. Gourlaouen, A. de la Lande, M. C. van Severen, B. Silvi, Int. J. Quant. Chem., 2008, 108, 1951.[PDF][HAL]
      DOI: 10.1002/qua.21711
    25. Energy analysis of Zn polycoordination in a metalloprotein environment and of the role of a neighboring aromatic residue. What is the impact of polarization?
      B. de Courcy, J-P Piquemal, N. Gresh, J. Chem. Theo. Comput., 2008, 4, 1659 .[PDF][HAL]
      DOI: 10.1021/ct800200j
    26. Fragment-localized Kohn-Sham orbitals via a Singles-CI procedure and application to local properties and intermolecular energy decomposition analysis
      P. Reinhardt, J-P Piquemal, A. Savin, J. Chem. Theo. Comput., 2008, 4, 2020 [PDF][HAL]
      DOI: 10.1021/ct800242n
    27. Design of next generation polarizable force fields from ab initio computations: beyond point charges.
      G. A. Cisneros, T. A. Darden, N. Gresh, P. Reinhardt, O. Parisel, J. Pilmé, J-P Piquemal in Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications, for the Book Series: Challenges and Advances in Computational Chemistry and Physics , ed. D. M. York and T.-S. Lee, 2009, 137-172, Springer Verlag. Invited Book Chapter [HAL]
      DOI:10.1007/978-1-4020-9956-4_6
    28. Progress towards accurate molecular modeling of metal complexes using polarizable force fields.
      R. Chaudret, S. Ulmer, M-C van Severen, N. Gresh, O. Parisel, G. A. Cisneros , T. A. Darden, J-P Piquemal, AIP Conf. Proc., 2009, 1102, 185.[PDF][HAL]
      DOI:10.1063/1.3108373 
    29. Trends in ns2 np0 [M(CO)]p+ complexes: from germanium to element 114 (Uuq).
      C. Gourlaouen, O. Parisel, J-P Piquemal, Chem. Phys. Lett. 2009, 469, 38-42 [PDF][HAL]
      DOI: 10.1016/j.cplett.2008.12.040
    30. Importance of lone pair interactions/redistribution in hard and soft ligands within the active site of alcohol dehydrogenase Znmetalloenzyme: Insights from Electron Localization Function.
      B. de Courcy, N. Gresh, J-P Piquemal, Interdiscip. Sci. Comput. Life Sci., 2009, 1, 55 [PDF][HAL]
      DOI: 10.1007/s12539-008-0027-0
    31. New intermolecular benchmark calculations on the water dimer: SAPT and supermolecular post-Hartree-Fock approaches.
      P. Reinhardt, J-P Piquemal, Int. J. Quant. Chem., 2009, 109, 3259. [PDF][HAL]
      DOI: 10.1002/qua.22299
    32. Dioxygen Activation by Mononuclear Copper Enzymes: Insights From a Tripodal Ligand Mimicking their CuM Coordination Sphere.
      A. de la Lande, D. Salahub, V. Moliner, H. Gérard, J-P Piquemal, O. Parisel, 2009, Inorg. Chem.(Communication), 4, 7003. [PDF][HAL]
      DOI:10.1021/ic900567z 
    33. Beyond holo/hemidirectionality in Pb(II) complexes: can the valence lone pair be bisdirected?
      M-C. van Severen, J.-P. Piquemal, O. Parisel, Chem. Phys. Lett., 2009, 478, 17 [PDF][HAL]
      DOI: 10.1016/j.cplett.2009.07.036
    34. Synthesis and evaluation of non-hydrolyzable D-mannose 6- phosphate surrogates reveal 6-deoxy-6-dicarboxymethyl-Dmannose as a new strong inhibitor of phosphomannose isomerases.
      J. Foret, B. de Courcy, N. Gresh, J-P. Piquemal, L. Salmon , Bioorg. Med. Chem., 2009, 17, 7100. [PDF][HAL]
      DOI: 10.1016/j.bmc.2009.09.005 
    35. The Gaussian Multipole Model.
      D. Elking, G. A. Cisneros, J-P Piquemal, T. A. Darden and L. G. Pedersen, J. Chem. Theo. Comput., 2010, 6, 190 [PDF] [HAL][PMC Free Text]
      DOI: 10.1021/ct900348b
    36. Theoretical Study of the Docking of Competitive Inhibitors at a Model of Tyrosinase enzyme Active Site: joint broken symmetry/spin-flip DFT study.
      A. de la Lande, J. Maddaluno, O. Parisel, T. A. Darden, J-P Piquemal, Interdiscip. Sci. Comput. Life Sci., 2010, 2, 3 [PDF] [HAL][PMC Free Text]
      DOI: 10.1007/s12539-010-0096-8
    37. Polarizable water molecules in ligand-macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase.
      B. de Courcy, J-P Piquemal, C. Garbay, N. Gresh, J. Am. Chem. Soc., 2010, 132, 3312. [PDF][HAL]
      DOI: 10.1021/ja9059156
    38. Lead substitution in synaptotagmin: a case study.
      M-C. van Severen, J-P Piquemal, O. Parisel, J. Phys. Chem. B, 2010, 114, 4005 [PDF][HAL]
      DOI:10.1021/jp910131r
    39. Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. A parallel quantum-chemical and polarizable molecular mechanics study.
      N. Gresh, N. Audiffren, J-P. Piquemal, J. de Ruyck, M. Ledecq, J. Wouters, J. Phys. Chem. B, 2010, 114, 4884 [PDF] [HAL]
      DOI:10.1021/jp907629k
    40. Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. I. Application to blood coagulation: direct cation-protein electronic effects vs. indirect interactions through water networks.
      B. de Courcy, L. G. Pedersen, O. Parisel, N. Gresh, B. Silvi, J. Pilmé, J-P Piquemal, J. Chem. Theory. Comput., 2010, 6, 1048 [PDF][HAL][PMC Free Text]
      DOI: 10.1021/ct100089s
    41. Editorial: Quantum Mechanical Modeling of Biological Systems.
      J-P Piquemal and Dennis Salahub, Interdiscip. Sci. Comput. Life Sci., 2010, 2, 1 [PDF][HAL]
      DOI: 10.1007/s12539-010-0001-5
    42. Polarizable molecular dynamics simulation of Zn(II) in water using the polarizable AMOEBA force field.
      J. Wu., J.-P. Piquemal, R. Chaudret, P. Reinhardt, P. Ren, J. Chem. Theo. Comput., 2010, 6, 2059.[PMC Free Text][HAL][PDF]
      DOI:
      10.1021/ct100091j
    43. Gas phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory.
      E. Gloaguen, B. de Courcy, J-P Piquemal, J. Pilmé, O. Parisel, R. Pollet, H. S. Biswal, F. Piuzzi, B. Tardivel, M. Broquier, M. Mons, J. Am. Chem. Soc.(Communication), 2010, 132, 11860-11863. [PDF][HAL]
      DOI: 10.1021/ja103996q
    44. Importance of backdonation in [M(CO)]p+ complexes isoelectronic to [Au(CO)]+.
      C. Gourlaouen, O. Parisel, J.-P. Piquemal, J. Chem. Phys., 2010, 133, 124310.[PDF][HAL]
      DOI: 10.1063/1.3491266
    45. The reaction mechanism of type I phosphomannose isomerases: new informations from polarizable molecular mechanics and inhibition studies.
      C. Roux, F. Bhatt, J. Forest, B. de Courcy, N. Gresh, J-P. Piquemal, C. J. Jeffery, L. Salmon, Proteins: Struct. Func. Bio., 2011, 79, 203-220 [PDF][HAL]
      DOI: 10.1002/prot.22873
    46. The Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n]2+ Complexes and Development of a Pb2+ Polarizable Force Field.
      M. Devereux, M.-C. van Severen, O. Parisel, J-P Piquemal, N. Gresh, J. Chem. Theo. Comput., 2011, 7, 138-147.[PDF][HAL]
      DOI: 10.1021/ct1004005
    47. Interactions within the Alcohol Dehydrogenase (ADH) Zn(II)-metalloenzyme active site: interplay between subvalence, electron correlation/dispersion and charge transfer/induction effects
      B. de Courcy, J-P. Dognon, C. Clavaguera, N. Gresh, J-P. Piquemal, Int. J. Quant. Chem., 2011, 111, 1213. [PDF][HAL]
      DOI: 10.1002/qua.22760
    48. Editorial: From Quantum Mechanics to Force Fields: new methodologies for the classical simulation of complex systems.
      J.-P. Piquemal and K. D. Jordan, Theo. Chem. Acc., 2012, 131, 1207 (Special Issue From Quantum Mechanics to Force Fields)[PDF][HAL]
      DOI: 10.1007/s00214-012-1207-x
    49. Unraveling Low Barrier Hydrogen Bonds in complex systems using a simple quantum topological criterion.
      R. Chaudret, G. A. Cisneros, O. Parisel, J-P. Piquemal, Chem. Eur. J.(Communication), 2011, 17, 2833.[PDF][HAL]
      DOI: 10.1002/chem.201002978
    50. Spin-driven activation of dioxygen in various metalloenzymes and their inspired models.
      A. de la Lande, D. R. Salahub, J. Maddaluno, A. Scemama, J. Pilme, O. Parisel, H. Gerard, M. Caffarel, J-P Piquemal, J. Comput. Chem. (Rapid Communication), 2011, 32, 1178.[PDF] [HAL]
      DOI: 10.1002/jcc.21698
    51. NCIPLOT: a program for plotting non-covalent interaction regions.
      J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D. Beratan, W. Yang, J. Chem. Theory. Comput., 2011, 7, 625. [PDF][HAL] [PMC Free Text]
      DOI: 10.1021/ct100641a
      NCIPLOT PROGRAM: DOWNLOAD
    52. Electron Pair Localization Function (EPLF) for Density Functional Theory and ab initio wave function-based methods : a new tool for chemical interpretation.
      A. Scemama, R. Chaudret, M. Caffarel, J-P. Piquemal, J. Chem. Theor. Comput., 2011, 7, 618.[PDF][HAL]
      DOI: 10.1021/ct1005938
      EPLF PROGRAM: DOWNLOAD
    53. Many-body Exchange-Repulsion in Polarizable Molecular Mechanics. I. Orbital based approximations and application to hydrated metal cations complexes.
      R. Chaudret, N. Gresh, O. Parisel, J-P. Piquemal,  J. Comput. Chem., 2011, 32, 2949. [PDF][HAL]
      DOI: 10.1002/jcc.21865
    54. Correlation between electron localization and metal ion mutagenicity in DNA synthesis from QM/MM calculations.
      R. Chaudret, J-P. Piquemal, G. A. Cisneros, Phys. Chem. Chem. Phys., 2011, 13, 11239 [PDF][HAL]
      DOI: 10.1039/c0cp02550j
    55. Polarizable water molecules in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates.
      N. Gresh, B. de Courcy, J.-P. Piquemal, J. Foret, S. Courtiol-Legourd, L. Salmon, J. Phys. Chem. B, 2011, 115, 8304. [PDF][HAL]
      DOI: 10.1021/jp2024654
    56. Enforcing hemidirectionality in Pb(II) complexes: the importance of anionic ligands.
      M.-C. van Severen, J.-P. Piquemal, O. Parisel, Chem. Phys. Lett., 2011, 510, 27 [PDF][HAL]
      DOI: 10.1016/j.cplett.2011.04.096
    57. Competitive ligand / chelate binding in [Cu(TMPA)]+ and [Cu(tren)]+ based complexes.
      L. Bonniard, S. Ulmer, A. de la Lande, J.-P. Piquemal, O. Parisel, H. Gérard, Cat. Tod., 2011, 177, 79.[PDF][HAL]
      DOI: 10.1016/j.cattod.2011.07.015 
    58. Towards accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas phase energetics to hydration free energies.
      A. Marjolin, C. Gourlaouen, C. Clavaguera, N. Gresh, P. Y. Ren, J. Wu, J.-P. Dognon and J.-P. Piquemal, Theo. Chem. Acc., 2012, 131, 1198. [PDF][HAL]
      DOI: 10.1007/s00214-012-1198-7
      selected to appear in Highlights in Theoretical Chemistry, Vol. 3, 2012, Series Editors: Cramer, Christopher J., Truhlar, Donald G., Springer. [Link]
      DOI: 10.1007/
    59. Toward a ligand specific of Pb2+ with respect to the Zn2+ and Ca2+ cations: A track from quantum chemistry.
      M.-C. van Severen, R. Chaudret, O. Parisel, J.-P. Piquemal, Chem. Phys. Lett., 2012, 532, 9 (COVER) [PDF][HAL]
      DOI: 10.1016/j.cplett.2012.02.037
    60. Modeling Structural Coordination and Ligand Binding in Zinc Proteins with the AMOEBA Polarizable Potential.
      J. Zhang, W. Yang, J.-P. Piquemal, P. Ren, J. Chem. Theo. Comput., 2012, 8, 1314[PDF] [HAL][PMC Free Text]
      DOI: 10.1021/ct200812y
    61. Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions.
      N. Gillet, R. Chaudret, J. Contreras-Garcia, W. Yang, B. Silvi and J.-P. Piquemal, J. Chem. Theory. Comput., 2012, 8, 3993 [PDF] [HAL][PMC free Text]
      DOI: 10.1021/ct300234g
    62. Ionic interactions: comparative topological approach.
      J. Contreras-Garcia, M. Calatayud, J.-P. Piquemal and J.M. Recio, Comp. Theo. Chem., 2012, 998, 193.[PDF][HAL]
      DOI: 10.1016/j.comptc.2012.07.043
    63. Unraveling interactions in large complex systems using quantum chemistry interpretative techniques and new generation polarizable force fields.
      R Chaudret, B de Courcy, A Marjolin, M-C van Severen, PY Ren, JC Wu, O Parisel, J-P Piquemal, AIP Conf. Proc., 2012, 1504, 699 [PDF][HAL]
      DOI: 10.1063/1.4771791
    64. Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds?
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, J. Comput. Chem., 2013, 34, 1125 [PDF][HAL]
      DOI:10.1002/jcc.23242
    65. Towards Energy Decomposition Analysis for open and closed shell f-elements mono aqua complexes.
      A. Marjolin, C. Gourlaouen, C. Clavaguera, J.-P. Dognon, J.-P. Piquemal, Chem. Phys. Lett., 2013, 563, 25 [PDF][HAL]
      DOI:10.1016/j.cplett.2013.01.066
    66. Understanding Structure and Electronic Properties of Th4+ – Water Complexes.
      C. Gourlaouen, C. Clavaguera, A. Marjolin, J.-P. Piquemal, J.-P. Dognon , Can. J. Chem., 2013, 91, 821-831.[PDF][HAL]
      DOI: 10.1139/cjc-2012-0546
    67. Further refinements of next-generation force-fields: non empirical localization of off-centered-points in molecules.
      R. Chaudret, N. Gresh, G. A. Cisneros, A. Scemama, J-P. Piquemal, Can. J. Chem., 2013, 91, 804-810.[PDF][HAL]
      DOI: 10.1139/cjc-2012-0547
    68. Understanding the chemistry of lead at a molecular level: the Pb(II) 6s6p lone pair can be bisdirected in proteins.
      M.-C. van Severen, U. Ryde, O. Parisel, J.-P. Piquemal, J. Chem. Theory. Comput., 2013, 9, 2416-2424[PDF][HAL]
      DOI: 10.1021/ct300524v
    69. Towards a Deeper understanding of Enzyme Reactions using the coupled ELF/NCI Analysis: Application to DNA repair enzymes.
      D. Fang, R. Chaudret, J.-P. Piquemal, G. A. Cisneros, J. Chem. Theory. Comput. 2013, 9, 2156-2160.[PDF][HAL]
      DOI: 10.1021/ct400130b
    70. Are bond critical points really critical for hydrogen bonding?
      J. R. Lane, J. Contreras-Garcia, J.-P. Piquemal, B. J. Miller, H. G. Kjaergaar, J. Chem. Theory Comput., 2013, 9, 3263 [PDF][HAL]
      DOI: 10.1021/ct400420r
    71. Unravelling Non Covalent Interactions within Flexible Biomolecules: from electron density topology to gas phase spectroscopy.
      R. Chaudret, B. de Courcy,J. Contreras-Garcia, E. Gloaguen, A. Zehnacker-Rentien, M. Mons, J.-P. Piquemal, Phys. Chem. Chem. Phys., 2014, 16, 9876, [PDF][HAL]
      DOI: 10.1039/C3CP52774C
    72. La surface d’energie potentielle vue par les champs de forces
      I. Demachy, J.-P. Piquemal, l’Actualité Chimique, 2014, 388-389, 37-42 [PDF][HAL]
      [LINK to Journal]
    73. Modeling Organochlorine Compounds and the sigma hole Effect Using a Polarizable Field.
      X. Mu, Q. Wang, L.P. Wang, S. D. Fried, J.-P. Piquemal, K. N. Dalby, P. Y. Ren, J. Phys. Chem. B, 2014, 118, 6456-6465 [PDF][HAL][PMC Free Text]
      DOI: 10.1021/jp411671a
    74. Quantum Calculations in Solution for Large to Very Large Molecules: a New Linear Scaling QM/Continuum Approach.
      F. Lipparini, L. Lagardere, G. Scalmani, B. Stamm, E. Cances, Y. Maday, J.-P. Piquemal, M. Frisch, B. Mennucci, J. Phys. Chem. Lett, 2014, 5, 953-958 [PDF][HAL]
      DOI: 10.1021/jz5002506
    75. GEM*: A Molecular Electronic Density–Based Force Field for Classical Molecular Dynamics Simulations.
      R. Duke, O. Starovoytov, J.-P. Piquemal, G. A. Cisneros, J. Chem. Theory Comput., 2014, 10, 1361-1365 [PDF][HAL] (Open Access)
      DOI: 10.1021/ct500050p
    76. Scalable evaluation of the polarization energy and associated forces in polarizable molecular dynamics: I. towards massively parallel direct space computations.
      F. Lipparini, L. Lagardère, B. Stamm, E. Cancès, M. Schnieders, P. Y. Ren, Y. Maday, J.-P. Piquemal, J. Chem. Theory. Comput., 2014, 10, 1638-1651[HAL][PDF][PMC Free Text]
      DOI: 10.1021/ct401096t
    77. Revisiting H2O Nucleation around Au+ and Hg2+: the Peculiar Pseudo-Soft Character of the gold cation.
      R. Chaudret, J. Contreras-Garcia, M. Delcey, O. Parisel, W. Yang, J.-P. Piquemal, J. Chem. Theory. Comput., 2014, 10, 1900-1909 [PDF][HAL]
      DOI: 10.1021/ct4006135
    78. DFT steric based energy decomposition analysis of intermolecular interactions.
      D. Fang, J.-P Piquemal, J.-P. Piquemal, G.A. Cisneros, S. Liu, TCA, 2014, 133, 1484 [PDF][HAL]
      DOI:10.1007/s00214-014-1484-7
    79. A Supervised Fitting Approach to Force Field Parametrization with Application to the SIBFA Polarizable Force Field.
      M. Devereux, N. Gresh, J.-P. Piquemal, M. Meuwly, J. Comput. Chem., 2014, 35, 1577-1591 (COVER) [PDF][HAL]
      DOI: 10.1002/jcc.23661
    80. S/G-1: An Ab Initio Force-field Blending Frozen Hermite Gaussian Densities and Distributed Multipoles. Proof of Concept and First Applications to Metal Cations.
      R. Chaudret, N. Gresh, C. Narth, L. Lagardère, T. A. Darden, G. A. Cisneros, J-P. Piquemal, J. Phys. Chem. A, 2014, 118, 7598-7612 [HAL] [PDF]
      DOI: 10.1021/jp5051657
    81. Synthesis and structure-activity relationship of non peptidic antagonists of Neuropilin-1 receptor.
      W. Q. Liu, V. Megale, L. Borriello, B. Leforban, M. Montès, E. Goldwaser, N. Gresh, J.-P. Piquemal, R.  Hadj-Slimane, O. Hermine, C. Garbay, F. Raynaud, Y. Lepelletier, L. Demange, Bioorg Med. Chem. Lett., 2014, 24, 4254-4259 [PDF][HAL]
      DOI: 10.1016/j.bmcl.2014.07.028
    82. Polarizable Molecular Mechanics studies of Cu(I)/Zn(II) Superoxide Dismutase. Bimetallic binding site and structured waters.
      N. Gresh, K. Hage, D. Perahia, J-P. Piquemal, C.Berthomieu, D. Berthomieu.,J. Comput. Chem., 2014, 35, 2096-2106 [PDF][HAL]
      DOI: 10.1002/jcc.23724
    83. Characterizing Molecular Interactions in Chemical Systems.
      D. Gunther, R. A. Boto, J. Contreras-Garcia, JP. Piquemal, J. Thierny, IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 2476 – 2485. [HAL]
      DOI: 10.1109/TVCG.2014.2346403
    84. Conformational analysis of a polyconjugated protein-binding ligand by joint ab initio quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability.
      E. Goldwaser, B. de Courcy, L. Demange, C. Garbay, F. Raynaud, R. Hadj-Slimane, J.-P. Piquemal, N. Gresh, J. Mol. Mod., 2014, 20, 2472 [PDF][HAL]
      DOI: 10.1007/s00894-014-2472-5
    85. Hydration Gibbs Free Energies of Open and Closed Shell Trivalent Lanthanide and Actinide Cations from Polarizable Molecular Dynamics.
      A. Marjolin, C. Gourlaouen, C. Clavaguera, P. Y. Ren, J.-P. Piquemal, J.-P. Dognon, J. Mol. Mod., 2014, 20, 2471[PDF][HAL]
      DOI: 10.1007/s00894-014-2471-6
    86. Substituent-Modulated Affinities of Halobenzene Derivatives to the HIV-1 Integrase Recognition Site. Analyses of the Interaction Energies by Parallel Quantum Chemical and Polarizable Molecular Mechanics.
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, 2014, J. Phys. Chem. A, 118, 9772-9782 [PDF][HAL]
      DOI: 10.1021/jp5079899
    87. Quantum, Classical and Hybrid QM/MM Calculations in Solution: General Implementation of thE ddCOSMO Linear Scaling Strategy
      F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J-P. Piquemal, M. J. Frisch, B. Mennucci, J. Chem. Phys., 2014, 141, 184108 [PDF][HAL]
      DOI: 10.1063/1.4901304
    88. Could the ‘Janus-like’ properties of the halobenzene CX bond (X=Cl, Br) be leveraged to enhance molecular recognition?
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, J. Comput. Chem., 2015, 36, 210-221 (COVER) [PDF][HAL]
      DOI: 10.1002/jcc.23786
    89. Quantum-chemistry based calibration of the alkali metal cation series (Li+ Cs+) for large-scale polarizable molecular mechanics/dynamics simulations.
      T. Dudev, M. Devereux,M. Meuwly, C. Lim, J-P. Piquemal, N. Gresh, J. Comput. Chem., 2015, 36, 285-302 (COVER) [PDF][HAL]
      DOI: 10.1002/jcc.23801
    90. Entasis Through Hook-and-Loop Fastening in a Glycoligand with Cumulative Weak Forces Stabilizing CuI.
      L. Garcia, F. Cisnetti, N. Gillet, R. Guillot, M. AumontNicaise, J.P. Piquemal, M. Desmadril, F. Lambert, C. Policar., J. Am. Chem. Soc., 2015, 137, 1141-1146 [HAL]
      DOI: 10.1021/ja510259p
    91. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent.
      F. Lipparini, L. Lagardère, C. Raynaud, B. Stamm, E. Cancès, M. Schnieders, P. Y. Ren, B. Mennucci, Y. Maday, J.-P. Piquemal, J. Chem. Theory. Comput., 2015, 11, 623-634 [HAL][PMC Free Text]
      DOI: 10.1021/ct500998q
    92. Addressing the issues of non-isotropy and non-additivity in the development of quantum chemistry-grounded polarizable molecular mechanics.
      Nohad Gresh, Krystel El Hage, Elodie Goldwaser, Benoit de Courcy, Robin Chaudret, David Perahia, Christophe Narth, Louis Lagardere, Filippo Lipparini, Jean-Philip Piquemal, 2015, in Quantum Modeling of Complex Molecular Systems, vol. 21, pp 1-49, Editors: J. L. Rivail, M. Ruiz-Lopez and X. Assfeld, Springer.[HAL]
      DOI: 10.1007/978-3-319-21626-3_1
    93. Polarizable Force Fields for Biomolecular Modeling.
      Y. Shi, M. Schnieders, P. Y. Ren, J.-P. Piquemal Reviews in Computational Chemistry, 2015, Vol. 28, 51-86, Wiley [HAL]
      DOI: 10.1002/9781118889886.ch2
    94. Bridging Organometallics and Quantum Chemical Topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination.
      B. de Courcy, E. Derat, J.-P. Piquemal, J. Comput. Chem., 2015, 36, 1167-1175 [PDF][HAL]
      DOI: 10.1002/jcc.23911
    95. A General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field.
      Q. Wang, J. A. Rackers, C. He, R. Qi, C. Narth, L. Lagardère, N. Gresh, J. W. Ponder, J-P. Piquemal, P. Y. Ren, J. Chem. Theory. Comput. 2015, 11, 2609-2618 [HAL][PMC Free Text]
      DOI: 10.1021/acs.jctc.5b00267
    96. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald.
      L. Lagardère, F. Lipparini, E. Polack, B. Stamm, E. Cancès, M. Schnieders, P. Y. Ren, Y. Maday, J.-P. Piquemal, J.Chem. Theory. Comput., 2015, 11, 2589-2599 [HAL] [PMC Free Text]
      DOI: 10.1021/acs.jctc.5b00171
    97. Approaching the double-faceted nature of the CX bond in halobenzenes with a bifunctional probe.
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, Chem. Phys. Lett., 2015, 637, 51-57 [PDF][HAL]
      DOI: 10.1016/j.cplett.2015.07.047
    98. Stacked and H-bonded cytosine dimers. Analysis of the intermolecular interaction energies by parallel quantum chemistry and polarizable molecular mechanics.
      N. Gresh, J. E. Sponer, M. Devereux, B. de Courcy, J-P. Piquemal, J. Sponer, J. Phys. Chem. B, 2015, 119, 9477-9495 [HAL][PDF]
      DOI: 10.1021/acs.jpcb.5b01695
    99. Butanethiol adsorption and dissociation on Ag (111): a DFT study.
      A. Li, J.-P. Piquemal, J. Richard, M. Calatayud, Surf. Sci., 2016, 646, 247-252 [HAL]
      DOI: 10.1016/j.susc.2015.06.009/
    100. Interpretation of the reduced density gradient.
      R. A. Boto, J. Contreras-Garcia, J. Tierny, J- P. Piquemal, Mol. Phys., 2016, 114, 1406-1414. [HAL]
      DOI: 10.1080/00268976.2015.1123777
    101. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.
      C. Narth, L. Lagardère, E. Polack, N. Gresh, Q. Wang, R. Bell, David, J. Rackers, J. W. Ponder, P. Y. Ren, J.-P. Piquemal ,J. Comput. Chem., 2016, 37, 494-506(COVER) [HAL]
      DOI: 10.1002/jcc.24257
    102. LICHEM: A QM/MM Program for Simulations with Multipolar and Polarizable Force Fields.
      E. G. Kratz, A. R. Walker, L. Lagardère, F. Lipparini, J.-P. Piquemal, G. A. Cisneros, J. Comput. Chem., 2016, 37(11), 1019-1029 (COVER).[HAL][PMC Free Text]
      DOI: 10.1002/jcc.24295
    103. A complete NCI perspective: from new bonds to reactivity.
      C.  Narth, Z. Maroun, R. A. Boto, R. Chaudret, M.-L. Bonnet, J.-P. Piquemal, J. Contreras-Garcia,2016 in Applications of Topological Methods in Molecular Chemistry, Challenges and Advances in Computational Chemistry and Physics series, Edts: Esmail Alikhani, Remi Chauvin, Christine Lepetit, and Bernard Silvi, Springer, p491-527[HAL]
      DOI: 10.1007/978-3-319-29022-5_18
    104. Status of the Gaussian Electrostatic Model a Density-Based Polarizable Force Field.
      Jean-Philip Piquemal, G. Andres Cisneros, 2016 in Many-body effects and electrostatics in Biomolecules, Eds. Qiang Cui, Pengyu Ren and Markus Meuwly, chapter 8, p269-299, Pan Standford Publishing, ISBN:9789814613927 [ HAL][PDF][[link]
      DOI: 10.1201/b21343-11
    105. Study of the inhibition mechanism of HIV-1 integrase by diketoacids molecules.
      L. El Khoury, Z. Hobaika, K. El Hage, S. Fermandjian, J.-P. Piquemal, N. Gresh, R. G. Maroun, Journal of Virus Eradication, 2016, 2, supplement 1, 14
      [Full text]
    106. A QM/MM approach using the AMOEBA polarizable embedding: from ground state energies to electronic excitations.
      D. Loco, E. Polack, S. Caprasecca, L. Lagardère, F. Lipparini, J.-P. Piquemal, B. Mennucci, J. Chem. Theory. Comput., 2016, 12, 3654-3661 [HAL]
      DOI: 10.1021/acs.jctc.6b00385
    107. Complexes of a Zn-Metalloenzyme Binding Site with Hydroxamate-Containing Ligands. A Case for Detailed Benchmarkings of Polarizable Molecular Mechanics/ Dynamics Potentials When the Experimental Binding Structure is Unknown.
      N. Gresh, D. Perahia, B. de Courcy, J. Foret, C. Roux, L. El-Khoury, J.-P. Piquemal, L. Salmon, J. Comput. Chem., 2016, 37, 2770-2782 [PDF][HAL]
      DOI: 10.1002/jcc.24503
    108. An Optimized Charge Penetration Model for Use with the AMOEBA Force Field.
      J. A. Rackers, Q. Wang, J.-P. Piquemal, P. Ren, J. W. Ponder, Phys. Chem. Chem. Phys. (Special issue: Insights from advanced methods in molecular dynamics ), 2017, 19, 276-291 [HAL][PMC Free Text]
      DOI: 10.1039/C6CP06017J
    109. Truncated Conjugate Gradient (TCG): an optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations.
      F. Aviat, A. Levitt, Y. Maday, B. Stamm, P. Y. Ren, J. W. Ponder, L. Lagardere, J.-P.Piquemal, J. Chem. Theory. Comput., 2017, 13, 180-190 (Open Access) [HAL]
      DOI: 10.1021/acs.jctc.6b00981
    110. Channeling Through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+ , K+ and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential.
      N. Gresh, S. Naseem-Khan, L. Lagardère, J.-P. Piquemal, J. E. Sponer, J. Sponer, J. Phys. Chem. B, 2017, 121, 3997-4014 [HAL]
      DOI: 10.1021/acs.jpcb.7b01836
    111. The inhibition process of HIV-1 integrase by diketoacids molecules: understanding the factors governing the better efficiency of dolutegravir.
      L. El Khoury, Jean-Philip Piquemal , Serge Fermandjian, Richard G. Maroun, Nohad Gresh, Zeina Hobaika, BBRC, 2017, 488, 433-438 [HAL]
      DOI: 10.1016/j.bbrc.2017.05.001
    112. Importance of explicit smeared lone-pairs in anisotropic polarizable molecular mechanics. Torture track angular tests for exchange-repulsion and charge transfer contributions.
      L. El Khoury, S. Naseem-Khan, K. Kwapien, D. Perahia, Z. Hobaika, R. Maroun, J.-P. Piquemal, N. Gresh, J. Comput. Chem., 2017, 38, 1897-1920 [HAL]
      DOI: 10.1002/jcc.24830
    113. Capturing Many-body Interactions with Classical Dipole Induction Models.
      C. Liu, R. Qi, Q. Wang, J.-P. Piquemal, P. Ren, J. Chem. Theory. Comput., 2017, 13, 2751-2761 (Open Access)[HAL]
      DOI: 10.1021/acs.jctc.7b00225
    114. Calibration of 1,2,4-Triazole-3-Thione, an Original Zn-Binding Group of Metallo-betaLactamase Inhibitors. Validation of a Polarizable MM/MD Potential by Quantum Chemistry.
      K. Kwapien, M. Damergi, S. Nader, L. El Khoury, Z. Hobaika, R. Maroun, J.-P. Piquemal, L. Gavara, D. Berthomieu, J.-F. Hernandez, N. Gresh, J. Phys. Chem. B, 2017, 121, 6295-6312 [PDF][HAL]
      DOI: 10.1021/acs.jpcb.7b01053
    115. Tinker-OpenMM : Absolute and Relative Alchemical Free Energies using AMOEBA on GPUs.
      M. Harger, D. Li, Z. Wang, K. Dalby, L. Lagardère, J.-P. Piquemal, J. Ponder, P. Ren, J. Comput. Chem., 2017, 38, 2047-2055[PDF][HAL][PMC Free Text]
      DOI: 10.1002/jcc.24853
    116. A simple isomerisation of the purine scaffold of a kinase inhibitor, roscovitine, affords a ten- fold enhancement of its affinity for CDK5 and CDK7. Could this be traced back to conjugation-induced stiffenings/loosenings of rotational barriers?
      K. El Hage, J.-P. Piquemal, N. Oumata, L. Meijer, H. Galons, N. Gresh, ACS Omega, 2017, 2, 3467-3474 (Open Access)[HAL]
      DOI: 10.1021/acsomega.7b00471 
    117. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding.
      D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci, J.-P. Piquemal, J. Chem. Theory. Comput, 2017, 13, 4025-4033 (Open Access)[HAL]
      DOI: 10.1021/acs.jctc.7b00572
    118. The Truncated Conjugate Gradient (TCG), a Non-iterative/Fixed-cost Strategy for Computing Polarization in Molecular Dynamics: Fast Evaluation of Analytical Forces.
      F. Aviat, L. Lagardère, J.P. Piquemal, J. Chem. Phys., 2017, 147, 161724 (special issue: from Quantum Mechanics to Force fields)[HAL][ArXiv]
      DOI: 10.1063/1.4985911
    119. Preface: Special Topic From Quantum Mechanics to Force Fields.
      J.-P. Piquemal, K. D. Jordan, J. Chem. Phys., 2017, 147, 161401 (special issue: from Quantum Mechanics to Force fields)[HAL]
      DOI: 10.1063/1.5008887
    120. Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds covalent and non-covalent interactions.
      R. Alvarez-Boto, J.-P. Piquemal, J. Contreras-Garcia, TCA, 2017,136, 139(ESCB1 conference special issue) [HAL]
      DOI: 10.1007/s00214-017-2169-9
    121. Towards Scalable and Accurate Molecular dynamics using the SIBFA polarizable force field.
      L. Lagardère, L. El-Khoury, S. Nassem-Kahn, F. Aviat, N. Gresh, J.P. Piquemal, AIP Conf. Proc., 2017, 1906, 030018 (Proceedings of the ICCMSE 2017 conference)[PDF][HAL]
      DOI: 10.1063/1.5012297
    122. Tinker-HP: a Massively Parallel Molecular Dynamics Package for Multiscale Simulations of Large Complex Systems with Advanced Polarizable Force Fields.
      L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M. Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, N. Gresh, Y. Maday, P. Ren, J. W. Ponder, J.-P. Piquemal, Chem. Sci., 2018, 9, 956-972 (Open Access)[HAL]
      DOI: 10.1039/C7SC04531J
    123. Independent Gradient Model: a new approach for probing strong and weak interactions in molecules from wave function calculations.
      C. Lefebvre, H. Khartabil, J-C. Boisson, J. Contreras-Garcia, J.-P. Piquemal, E. Henon, Chem. Phys. Chem., 2018, 19, 724-735 [PDF][HAL]
      DOI: 10.1002/cphc.201701325
    124. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids.
      C. Zhang, C. Lu, Z. Jing, C. Wu, J-P. Piquemal, J. W. Ponder, P. Ren, J. Chem. Theory. Comput., 201814,  2084–2108 [HAL][PMC-Free Access]
      DOI: 10.1021/acs.jctc.7b01169
    125. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in its Ferrous and Ferric Forms.
      X. Wu , C. Clavaguera , L. Lagardère , J-P. Piquemal, A. de la Lande, J. Chem. Theory. Comput., 2018, 14, 2705–2720.[HAL] [PDF]
      DOI: 10.1021/acs.jctc.7b01128
    126. QM/MM simulations with the Gaussian Electrostatic Model, a density–based polarizable potential.
      H. Gökcan, E. Kratz, T. A. Darden, J.-P. Piquemal, G. A. Cisneros, J. Phys. Chem. Lett., 2018, 9 (11), pp 3062–3067.[HAL][PMC Free Text]
      DOI: 10.1021/acs.jpclett.8b01412
    127. Elucidating the phosphate binding mode of PBP: The Critical Effect of Buffer Solution.
      R. Qi, Z. Jing, C. Liu, J.-P. Piquemal, K. N. Dalby, P. Ren, J. Phys. Chem. B, 2018, 122(24):6371-6376.[HAL][PMC Free Text]
      DOI: 10.1021/acs.jpcb.8b03194
    128. A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms.
      B. Stamm, L. Lagardère, É. Polack, Yvon Maday, J.-P. Piquemal, J. Chem. Phys., 2018, 149 (12), 124103 [PDF][HAL][ArXiv]
      DOI: 10.1063/1.5044541
    129. Tinker 8: Software Tools for Molecular Design.
      J. A. Rackers, Z. Wang, C. Lu, M. L. Maury, L. Lagardère, M. J. Schnieders, J.-P. Piquemal, P. Ren, J. W. Ponder,  J. Chem. Theory. Comput., 2018, 14 (10), 5273–5289 [HAL][PMC Free Text][PDF]
      DOI: 10.1021/acs.jctc.8b00529
    130. How to make continuum solvation incredibly fast in a few simple steps: a practicle guide to the domain decomposition paradigm for the Conductor-like Screening Model.
      B. Stamm, L. Lagardère, G. Scalmani, P. Gatto, E. Cancès, J.-P. Piquemal, Y. Maday, B. Mennucci, F. Lipparini, Int. J. Quant. Chem., 2019, 119, e25669 [HAL]
      DOI: 10.1002/qua.25669
    131. Polarizable force fields for biomolecular simulations: Recent advances and applications.
      Z. Jing, C. Liu, S. Y. Cheng, R. Qi, B. D. Walker, J.-P. Piquemal, P. Ren, Ann. Rev. Biophys, 2019, 48, 371-394 [HAL][PMC Free Text]
      DOI:10.1146/annurev-biophys-070317-033349
    132. Massively parallel implementation of Steered Molecular Dynamics in Tinker-HP: polarizable versus non-polarizable simulations.
      F. Célerse, L. Lagardère, E. Derat, J.-P.Piquemal, J. Chem. Theory. Comput., 2019, 15, 3694-3709 [ChemRxiv][HAL]
      Erratum: J. Chem. Theory. Comput., 2021, 17, 5, 3235–3236 [HAL][PDF] DOI: 10.1021/acs.jctc.1c00405 
      DOI: 10.1021/acs.jctc.9b00199
    133. Pushing the limits of Multiple-Timestep Strategies for Polarizable Point Dipole Molecular Dynamics.
      L. Lagardère, F. Aviat, J.-P. Piquemal, J. Phys. Chem. Lett., 2019, 10, 2593−2599 [HAL] [PDF]
      DOI: 10.1021/acs.jpclett.9b00901
    134. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields.
      D. Bedrov, J.-P. Piquemal, O. Borodin, A. D. MacKerell Jr, B. Roux, C. Schröder, Chem. Rev.,  2019, 119, 7940-7995(Open Access) [HAL][PDF]
      DOI: 10.1021/acs.chemrev.8b00763
    135.  AMOEBA+ Classical Potential for Modeling Molecular Interactions.
      C. Liu, J.-P. Piquemal, P. Ren, J. Chem. Theory. Comput., 2019, 15, 4122-4139 [ChemRxiv][HAL][PMC Free Text]
      DOI: 10.1021/acs.jctc.9b00261
    136. Towards Large Scale Hybrid QM/MM Dynamics of Complex Systems with Advanced Point Dipole Polarizable Embeddings.
      D. Loco, L. Lagardère, G. A. Cisneros, G. Scalmani, M. Frisch, F. Lipparini, B. Mennucci, J.-P. Piquemal, Chem. Sci., 2019, 10, 7200-7211 (Open Access) [HAL]
      DOI: 10.1039/C9SC01745C
    137. Grands Challenges: Joliot-Curie.
      Various authors (including JPP), Grands Challenges, 2019, GENCI and CEA [PDF][ResearchGate]
    138. Raising the Performance of the Tinker-HP Molecular Modeling Package [Article v1.0].
      L. H. Jolly, A. Duran, L. Lagardère, J. W. Ponder, P. Y. Ren, J.-P. Piquemal, Living Journal of Computational Molecular Science, 2019, 1 (2), 10409  (Open Access) [ArXiv][HAL][PDF]
      DOI: 10.33011/livecoms.1.2.10409
    139. Molecular Dynamics using Non-variational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation and Application to the Bond Capacity Model.
      P. P. Poier, L. Lagardère, J.-P. Piquemal, F. Jensen, J. Chem. Theory. Comput., 2019, 15, 11, 6213-6224 [ChemrXiv][HAL]
      DOI: 10.1021/acs.jctc.9b00721
    140. Spectrometric and computational studies of the binding of HIV-1 integrase inhibitors to viral DNA extremities.
      L. El Khoury, K. El Hage, J.-P. Piquemal, S. Fermandjian, R. G. Maroun, N. Gresh, Z. Hobaika,  PeerJ Physical Chemistry, 2019, 1, e6 (Open Access) [HAL]
      DOI: 10.7717/peerj-pchem.6
    141. Accurate biomolecular simulations account for electronic polarization.
      J. Melcr, J.-P. Piquemal, Front. Mol. Biosci., 2019, 6, 143 (Open Access) [ArXiv][HAL]
      DOI: 10.3389/fmolb.2019.00143
    142. Implementation of Geometry Dependent Charge Flux into the Polarizable AMOEBA+ Potential.
      C. Liu, J.-P. Piquemal, P. Ren, J. Phys. Chem. Lett., 2020, 11, 419-426 [HAL][ChemRxiv][PMC Free Text]
      DOI: 10.1021/acs.jpclett.9b03489
    143. Calibration of the dianionic phosphate group. Validation on the recognition site of the homodimeric enzyme phosphoglucose isomerase.
      M. Devillers, J.-P. Piquemal,L. Salmon, N. Gresh, J. Comput Chem., 2020, 41, 8, 839-854.[HAL][PDF]
      DOI: 10.1002/jcc.26134
    144. A New Way for Probing Bond Strength.
      J. Klein, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, J.-P. Piquemal, E. Henon, J. Phys. Chem A, 2020, 124 (9), 1850–1860 [HAL]
      DOI: 10.1021/acs.jpca.9b09845
    145. Reconciling NMR Structures of the HIV-1 Nucleocapsid Protein (NCp7) using Extensive Polarizable Force Field Free-Energy Simulations.
      L. El Khoury, F. Célerse, Louis Lagardère, L.-.H Jolly, E. Derat, Z. Hobaika, R. G. Maroun, P. Ren, S. Bouaziz, N. Gresh, J.-P. Piquemal, J. Chem. Theory. Comput., 2020, 16 (4), 2013–2020 [HAL][ChemRxiv][PMC Free Text]
      DOI: 10.1021/acs.jctc.9b01204
    146. Quantum-Chemistry based design of halobenzene derivatives with augmented affinities for the HIV-1 viral G4/C16 base-pair.
      P. El Darazi, L. El khoury, K. El Hage,  R. G. Maroun, Z. Hobaika, J-P. Piquemal, N. Gresh, Front. Chem., 2020, 8, 440 (Open Access) [HAL][ArXiv]
      DOI: 10.3389/fchem.2020.00440
    147. Solvation effects drive the selectivity in Diels-Alder reaction under hyperbaric conditions.
      D. Loco, R. Spezia, F. Cartier, I. Chataigner, J.–P. Piquemal, Chem. Comm., 2020, 56, 6632-6635 (COVER) [HAL][ChemRxiv]
      DOI: 10.1039/D0CC01938K
    148. NCIPLOT4: fast, robust and quantitative analysis of noncovalent interactions .
      R. A. Boto, C. Quan, R. Laplaza, F. Peccati, A. Carbone, J.-P. Piquemal, Y. Maday, J. Contreras-García,  J. Chem. Theory. Comput. , 2020,  16, 7, 4150–4158 [HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.0c00063
    149. Velocity jump processes : an alternative to multi-time-step methods for faster and accurate molecular dynamics simulations.
      P. Monmarché, J. Weisman, L. Lagardère, J.-P. Piquemal, J. Chem. Phys., 2020,  153, 024101 [ArXiv] [HAL]
      DOI: 10.1063/5.0005060
    150. NCIPLOT and the analysis of Noncovalent Interactions using the Reduced Density Gradient.
      R. Laplaza, F. Peccati, R. A. Boto, C. Quan, A. Carbone, J.-P. Piquemal, Y. Maday, J. Contreras-García, WIREs Comp. Mol. Sci., 2021, 11, e1497 [HAL][PDF]
      DOI: 10.1002/wcms.1497
    151. High-Resolution Mining of SARS-CoV-2 Main Protease Conformational Space: Supercomputer-Driven Unsupervised Adaptive Sampling.
      T. Jaffrelot Inizan, F. Célerse, O. Adjoua, D. El Ahdab, L.-H. Jolly, C. Liu, P. Ren, M. Montes, N. Lagarde, L. Lagardère, P. Monmarché, J.-P.Piquemal, Chem. Sci., 2021, 12, 4889 – 4907 (Open Access) [ChemRxiv][HAL]
      Simulation data can be found on the MolSSi/Bioexcel website : [Link] 
      DOI: 10.1039/D1SC00145K
    152. Tinker-HP : Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields using GPUs and Multi-GPUs systems.
      O. Adjoua,  L. Lagardère, L.-H. Jolly, Arnaud Durocher, Z. Wang, T. Very, I. Dupays, T. Jaffrelot Inizan, F. Célerse, P. Ren, J. Ponder, J-P. Piquemal, J. Chem. Theory. Comput., 2021, 17, 4, 2034–2053 (Open Access) (COVER)[HAL][ArXiv]
      DOI: 10.1021/acs.jctc.0c01164
    153. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.
      R. A. Corrigan, G. Qi, T. Casavant, A. Thiel, J. Lynn, B. Walker, L. Lagardère, J.-P. Piquemal, J. W. Ponder, P. Ren, M. J. Schnieders, J. Chem. Theory Comput., 2021, 17, 4, 2323–2341, online [HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.0c01286
    154. Assessment of SAPT and Supermolecular EDAs Approaches for the Development of Separable and Polarizable force fields.
      S. Naseem-Khan, N. Gresh, A. Misquitta, J.-P.Piquemal, J. Chem. Theory Comput. , 2021, 17, 5, 2759–2774 [HAL][ArXiv]
      DOI: 10.1021/acs.jctc.0c01337
    155. Atomistic Polarizable embeddings: energy, dynamics, spectroscopy and reactivity.
      D. Loco, L. Lagardère, O.  Adjoua, J.-P. Piquemal, Acc. Chem. Res., 2021, 54, 13, 2812–2822 (Open Access) (COVER)[HAL]
      DOI: 10.1021/acs.accounts.0c00662 
    156. Interfacial Water Many-body Effects Drive Structural Dynamics and Allosteric interactions in SARS-CoV-2 Main Protease Dimerization Interface.
      D. El Ahdab, L. Lagardère, T. Jaffrelot Inizan, F. Célerse, C. Liu, O. Adjoua, L.H. Jolly, N. Gresh, Z. Hobaika, P. Ren, R. G. Maroun, J.-P. Piquemal, J. Phys. Chem. Lett., 2021, 12, 6218–6226 (COVER) [HAL][ChemRxiv] (Open Access via PMC)
      DOI: 10.1021/acs.jpclett.1c01460
    157. Nuclear Quantum Effects in liquid water at near classical computational cost using the adaptive Quantum Thermal Bath.
      N. Mauger, T. Plé, L. Lagardère, S. Bonella, E. Mangaud, J.-P. Piquemal, S. Huppert, J. Phys. Chem. Lett., 2021, 12, 34, 8285–8291 [ArXiv] [HAL]
      DOI: 10.1021/acs.jpclett.1c01722
    158. Improvement of the Gaussian Electrostatic Model by Separate Fitting of Coulomb and Exchange-Repulsion Densities and Implementation of a new Dispersion term.
      S. Naseem-Khan,J.-P. Piquemal, G. A. Cisneros,  J. Chem. Phys., 2021, 155, 194103 [ChemRxiv][HAL][PMC]
      DOI: 10.1063/5.0072380
    159. On the Quantum Chemical Nature of Lead(II) “Lone Pair”. 
      C. Gourlaouen, J.-P. Piquemal, Molecules, 2022, 27(1), 27 (Open Access) [HAL][Arxiv]
      DOI: 10.3390/molecules27010027
    160. An Efficient Gaussian-Accelerated Molecular Dynamics (GaMD) Multilevel Enhanced Sampling Strategy: Application to Polarizable Force Fields Simulations of Large Biological Systems.
      F. Célerse, T. Jaffrelot Inizan,  L. Lagardère, O. Adjoua, P. Monmarché, Y. Miao, E. Derat, J.-P. Piquemal, J. Chem. Theory Comput., 2022, 18, 2, 968–977 (COVER)[HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.1c01024
    161. O(N) Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems.
      P. P. Poier, L. Lagardère, J.-P. Piquemal, J. Chem. Theory Comput., 2022, 18, 3, 1633–1645 (COVER)[HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.1c01291
    162. Computationally driven discovery of SARS-CoV-2 Mpro inhibitors: from design to experimental validation.
      L. El Khoury, Z. Jing, A. Cuzzolin, A. Deplano, D. Loco, B. Sattarov, F. Hédin, S. Wendeborn, C. Ho, D. El Ahdab, T. Jaffrelot Inizan, M. Sturlese, A. Sosic, M. Volpiana, A. Lugato, M. Barone, B. Gatto, M. Ludovica Macchia, M. Bellanda, R. Battistutta, C. Salata, I. Kondratov, R. Iminov, A. Khairulin, Y. Mykhalonok, A. Pochepko, V. Chashka-Ratushnyi , I. Kos, S. Moro, M. Montes, P. Ren, J. W. Ponder,L. Lagardère, J.-P. Piquemal, D. Sabbadin, Chem. Sc.,  2022, 13, 3674-3687 (Open Access) (COVER)[HAL][ArXiv]
      DOI: 10.1039/D1SC05892D
    163. Accurate Deep Learning-aided Density-free Strategy for Many-Body Dispersion-corrected Density Functional Theory.
      P. P. Poier, T. Jaffrelot Inizan, O. Adjoua, L. Lagardère, J.-P. Piquemal, J. Phys. Chem. Lett.,  2022, 13, 19, 4381–4388 [HAL] [ArXiv]
      DOI: 10.1021/acs.jpclett.2c00936
    164. Development of the Quantum Inspired SIBFA Many-Body Polarizable Force Field: I. Enabling Condensed Phase Molecular Dynamics Simulations.
      S. Naseem Kahn, L. Lagardère, C. Narth, G. A. Cisneros, P. Ren, N. Gresh, J.-P. Piquemal, 2022, 18, 6, 3607–3621 [HAL][ArXiv]
      DOI: 10.1021/acs.jctc.2c00029
    165. Efficient and Accurate Description of Diels-Alder Reactions using Density Functional Theory.
      D. Loco, I. Chataignier, J.-P. Piquemal, R. Spezia, ChemPhysChem, 2022, e202200349 (Open Access) [HAL][ChemRxiv]
      DOI: 10.1002/cphc.202200349
    166. Targeting the Major Groove of the Palindromic d(GGCGCC)2 Sequence by Oligopeptide Derivatives of Anthraquinone Intercalators .
      K. El Hage, G. Ribaudo , L. Lagardère, A. Ongaro, P. H. Kahn, L. Demange, J.-P. Piquemal, G. Zagotto, N. Gresh, JCIM, 2022, online [HAL][ArXiv]
      DOI: 10.1021/acs.jcim.2c00337
    167. Polarizable Multiscale Dynamics for probing solvent and complex environments.
      D. Loco, J.-P Piquemal in Photochemistry, 2022, 50, 382–398, Editors: Stefano Crespi, Stefano Protti [HAL]
      DOI:10.1039/9781839167676-00386
    168. Improving Condensed Phase Water Dynamics with Explicit Nuclear Quantum Effects: the Polarizable Q-AMOEBA Force Field.
      N. Mauger, T. Plé, L. Lagardère, S. Huppert, J.-P. Piquemal, J. Phys. Chem. B, 2022, 126, 43, 8813–8826 [HAL][ArXiv]
      DOI: 10.1021/acs.jpcb.2c04454
    169. Calculating the ground state energy of benzene under spatial deformations with noisy quantum computing.
      W. Sennane, J.-P. Piquemal, M. J. Rančić, Phys. Rev. A, 2023, 107, 012416 [HAL][ArXiv]
      DOI: 10.1103/PhysRevA.107.012416
    170. Generalized Many-Body Dispersion Correction through Random-phase Approximation for Chemically Accurate Density Functional Theory.
      P. P. Poier, L. Lagardère, J.-P. Piquemal, J. Phys. Chem. Lett., 2023, 14, 6, 1609–1617 (Open Access) [HAL][ArXiv]
      DOI: 10.1021/acs.jpclett.2c03722
    171. Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: from Force Fields to Machine Learning Potentials.
      T. Plé, N. Mauger, O. Adjoua,T. Jaffrelot-Inizan, L. Lagardère, S. Huppert, J.-P. Piquemal, J. Chem. Theory. Comput., 2023, 19, 5, 1432–1445 (COVER) [HAL][ArXiv]
      DOI: 10.1021/acs.jctc.2c01233
    172. Open Source Variational Quantum Eigensolver Extension of the Quantum Learning Machine (QLM) for Quantum Chemistry. 
      M. Haidar,  M. J. Rančić, T. Ayral, Y. Maday, J.-P. Piquemal, WIREs Comp. Mol. Sci., 2023, e1664
      (Open Access) [HAL][ArXiv]
      DOI: 10.1002/wcms.1664
    173. Extension of the Trotterized Unitary Coupled Cluster to Triple Excitations.
      M. Haidar,
       M. J. Rančić, Y. Maday, J.-P. Piquemal, J. Phys. Chem. A, 2023, 127, 15, 3543–3550 [HAL][ArXiv]
      DOI: 10.1021/acs.jpca.3c01753
    174. Scalable Hybrid Deep Neural Networks/Polarizable Potentials Biomolecular Simulations including long-range effects.
      T. Jaffrelot Inizan, T. Plé, O. Adjoua, P. Ren, H. Gökcan, O. Isayev, L. Lagardère, J.-P. Piquemal, Chem. Sci., 2023, 14, 5438-5452 (Open Access) [HAL][ArXiv]
      DOI: 10.1039/D2SC04815A
    175. ANKH: A Generalized O(N) Interpolated Ewald Strategy for Molecular Dynamics Simulations.
      I. Chollet, L. Lagardère, J.-P. Piquemal, J. Chem. Theory. Comput., 2023, 19, 10, 2887–2905 [HAL][ArXiv]
      DOI: 10.1021/acs.jctc.3c00015
    176. Polarizable QM/MM description of properties and processes of embedded molecules: from response theory to ab-initio molecular dynamics
      M. Nottoli, M. Bondanza, P. Mazzeo, L. Cupellini, C. Curutchet, Daniele Loco, Louis Lagardère, J.-P. Piquemal, B. Mennucci, F. Lipparini, WIREs Comp. Mol. Sci., 2023, e1674 (Open Access) [HAL]
      DOI: 10.1002/wcms.1674
    177. Overlap-ADAPT-VQE: Practical Quantum Chemistry on Quantum Computers via Overlap-Guided Compact Ansätze
      C. Feniou, M. Hassan, D. Traoré, E. Giner, Y. Maday, J.-P. Piquemal, Commun. Phys., 2023, 6, 192 (Open Access) [HAL][ArXiv][PDF]
      DOI: 10.1038/s42005-023-01312-y 
      Blog: Check our “Behind the paper” post on the Nature Physics community [LINK]
      Selected in the Editor’s Highlights – Communications Physics
    178. Force-Field-Enhanced Neural Network Interactions: from Local Equivariant Embedding to Atom-in-Molecule properties and long-range effects.
      T. Plé, L. Lagardère, J.-P. Piquemal, Chem. Sci., 2023, 14, 12554-12569 (Open Access) [HAL][ArXiv]
      DOI: 10.1039/D3SC02581K
    179. Smooth Particle Mesh Ewald-integrated stochastic Lanczos Many-body Dispersion algorithm.
      P. P. Poier, L. Lagardère, J.-P. Piquemal, J. Chem. Phys., 2023, 159, 15, 154109 [HAL][ArXiv]
      DOI: 10.1063/5.0166476
    180. Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-Polarizable Force Fields.
      J. Nochebuena, J.-P. Piquemal, S. Liu, G. A. Cisneros, J. Chem. Theory. Comput., 2023, 19, 21, 7715–7730 [HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.3c00762
    181. Enforcing local DNA kinks by sequence-selective trisintercalating oligopeptides of a tricationic porphyrin. A polarizable Molecular Dynamics study.
      N. Gresh, K. El Hage, L. Lagardère, F. Brégier, J. Godard, J.-P. Piquemal, M. Perrée-Fauvet, V. Sol, ChemPhysChem, 2023, e202300776 [HAL][BioRxiv]
      DOI: 10.1002/cphc.202300776
    182. ReaxFF Simulations of Self-Assembled Monolayers on Silver Surfaces and Nanocrystals.
      A. Lahouari, J.-P. Piquemal, J. Richardi, J. Phys. Chem. C, 2024, 128, 3, 1193–1201 [HAL][ArXiv]
      DOI: 10.1021/acs.jpcc.3c07098
    183. Unveiling the Full Dynamical and Reactivity Profiles of Acetylcholinesterase: A Comprehensive All-Atom Investigation.
      F. Célerse, L. Lagardère, Y. Bouchibti,  F. Nachon, L. Verdier, J.–P. Piquemal, E. Derat, ACS Catalysis,  2024, 14 (3), 1785-1796 [HAL][ChemRxiv]
      DOI: 10.1021/acscatal.3c05560
    184. Incorporating Neural Networks into the AMOEBA Polarizable Force Field.
      X. Wang, T. Jaffrelot Inizan, C. Liu, J.-P. Piquemal, P. Ren, J. Phys. Chem. B, 2024, 128 (10), 2381–2388 [HAL][ChemRxiv]
      DOI: 10.1021/acs.jpcb.3c08166
    185. Sparse Quantum State Preparation for Strongly Correlated Systems.
      C.
      Feniou, O. Adjoua, B. Claudon, J. Zylberman, E. Giner, J.-P. Piquemal, J. Phys. Chem. Lett., 2024, 15 (11), 3197–3205 (COVER) [HAL][ArXiv]
      DOI: 10.1021/acs.jpclett.3c03159
    186. Lambda-ABF: Simplified, Accurate and Cost-effective Alchemical Free Energy Computations.
      L. Lagardère, L. Maurin, O. Adjoua, K. El Hage, P. Monmarché, J.-P. Piquemal, J. Hénin, J. Chem. Theory. Comput.,
      2024, 20 (11), 4481-4498 [HAL][ArXiv]
      DOI: 10.1021/acs.jctc.3c01249
    187. Advancing Force Fields Parameterization: A Directed Graph Attention Networks Approach
      G. Chen,
      T. Jaffrelot Inizan, T. Plé, L. Lagardère, J.-P. Piquemal, Y. Maday, J. Chem. Theory. Comput., 2024, 20 (13), 5558-5569 [HAL][ChemRxiv]
      DOI: 10.1021/acs.jctc.3c01421
    188. Force Field X: A Computational Microscope to Study Genetic Variation and Organic Crystals Using Theory and Experiment 
      R. Gogal, A. Nessler, A. Thiel, H. Bernabe, R. Corrigan Grove, L. Cousineau, J. Litman, J. Miller, G. Qi, M. Speranza, M. Tollefson, T. Fenn, J. Michaelson, O. Okada, J.-P. Piquemal, J. Ponder, J. Shen, R. Smith, W. Yang, P. Ren, M. Schnieders, J. Chem. Phys.,  2024,  161, 1,  012501 [HAL][PDF]
      DOI: 10.1063/5.0214652
    189. Polylogarithmic-depth controlled-NOT gates without ancilla qubits.
      B. Claudon,  J. Zylberman, C. Feniou, F. Debbasch, A. Peruzzo, J.-P. Piquemal, Nat. Commun., 2024, 15, 5886 (Open Access) [HAL][ArXiv]
      DOI: 10.1038/s41467-024-50065-x
      Blog: Check our “Behind the paper” post on the Nature Physics community [LINK]
    190. FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials.
      T. Plé, O. Adjoua, L. Lagardère, J.-P. Piquemal, J. Chem. Phys., 2024, 161, 4,  042502 [HAL][ArXiv]
      DOI: 10.1063/5.0217688
    191. Water-Glycan Interactions Drive the SARS-CoV-2 Spike Dynamics: Insights into Glycan-Gate Control and Camouflage Mechanism.
      M. Blazhynska,
       L. Lagardère, C. Liu, O. Adjoua, P. Ren, J.-P. Piquemal, Chemical Science, 2024, 15, 14177-14187 (Open Access) (COVER)[HAL][BiorXiv]
      DOI: 10.1039/D4SC04364B
      =>This article is part of the themed collection: 2024 Chemical Science HOT Article Collection
    192. Leveraging Analog Quantum Computing with Neutral Atoms for Solvent Configuration Prediction in Drug Discovery. 
      M. D’Arcangelo, L.-Paul. Henry, L. Henriet, D. Loco, N. Gouraud, S. Angebault, J. Sueiro, J. Forêt, P. Monmarché, J.-P. Piquemal, Physical Review Research, 2024, 6, 043020 (Open Access)  [HAL][ArXiv]
      DOI: 10.1103/PhysRevResearch.6.043020
    193. β-actin plasticity is modulated by coordinated actions of histidine 73 methylation, nucleotide type, and ions.
      A. Schahl, L. Lagardère, B. Walker, P. Ren, A. Jégoud, M. Chavent, J.-P. Piquemal, 2024,  in revision [HAL][BioarXiv]
      DOI: 10.1101/2022.12.16.520803
    194. Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer.
      C. Feniou, B. Claudon, M. Hassan, A. Courtat, O. Adjoua, Y. Maday, J.-P. Piquemal, 2024, in revision [HAL][ArXiv][PDF]
      DOI: 10.48550/arXiv.2306.17159
    195. High-resolution Molecular Dynamics Simulations of the Pyruvate Kinase Muscle Isoform 1 and 2 (PKM1/2).
      Q. Delobelle, T. Jaffrelot Inizan, O. Adjua, L. Lagardère, F. Célerse,  V. Maréchal, J.-P. Piquemal, 2024, in revision [HAL][BioArXiv]
      DOI: 10.1101/2024.01.07.574528
    196. Dynamic pre-structuration of lipid nanodomain-segregating remorin proteins.
      Z. Xu, A. Schahl, M.-D. Jolivet, A. Legrand, A. Grélard, M. Berbon, E. Morvan, L. Lagardère, J.-P. Piquemal, A. Loquet, V. Germain, M. Chavent, S. Mongrand, B Habenstein, 2024, in revision [HAL][ResearschSquare]
      DOI: 10.21203/rs.3.rs-4364507/v1
    197. Polarizable models for selected Endocrine Disrupting Chemicals and their hosts.
      A. H. Mazurek, V. Thirion, Ł. Szeleszczuk, J.-P. Piquemal, C. Clavaguera, T. Simonson, 2024, in revision [HAL][ArXiv]
      DOI:
    198. Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction.
      D. Traore, O. Adjoua, C. Feniou, I.-M. Lygatsika, Y. Maday, E. Posenitskiy, K. Hammernik,  A. Peruzzo, J. Toulouse, E. Giner, J.-P. Piquemal, 2024, in revision [HAL][ArXiv]
      DOI: 10.48550/arXiv.2405.11567
    199. Fully-polarizable KS-DFT/AMOEBA embedding scheme for plane wave basis sets through the MiMiC framework.
      S. Kvedaravičiūtė, A. Antalík, O. Adjoua, T. Plé, L. Lagardère,U. Rothlisberger, J.-P. Piquemal, J. M. Haugaard Olsen, 2024, submitted [HAL][ChemRXiv]
      DOI: 10.26434/chemrxiv-2024-6sp7h
    200. The need to implement FAIR principles in biomolecular simulations.
      Rommie Amaro, Johan Åqvist, Ivet Bahar, Federica Battistini, Adam Bellaiche, Daniel Beltran, Philip C Biggin, Massimiliano Bonomi, Gregory R Bowman, Richard Bryce, Giovanni Bussi, Paolo Carloni, David Case, Andrea Cavalli, Chie-En A Chang, Thomas E Cheatham III, Margaret S Cheung, Cris Chipot, Lillian T Chong, Preeti Choudhary, Cecilia Clementi, Rosana Collepardo-Guevara, Peter Coveney, T Daniel Crawford, Matteo Dal Peraro, Bert de Groot, Lucie Delemotte, Marco De Vivo, Jonathan Essex, Franca Fraternali, Jiali Gao, Josep Lluís Gelpí, Francesco Luigi Gervasio, Fernando Danilo Gonzalez-Nilo, Helmut Grubmüller, Marina Guenza, Horacio V Guzman, Sarah Harris, Teresa Head-Gordon, Rigoberto Hernandez, Adam Hospital, Niu Huang, Xuhui Huang, Gerhard Hummer, Javier Iglesias-Fernández, Jan H Jensen, Shantenu Jha, Wanting Jiao, Shina Caroline Lynn Kamerlin, Syma Khalid, Charles Laughton, Michael Levitt, Vittorio Limongelli, Erik Lindahl, Kersten Lindorff-Larsen, Sharon Loverde, Magnus Lundborg, Yun Lina Luo, Francisco Javier Luque, Charlotte I Lynch, Alexander MacKerell, Alessandra Magistrato, Siewert J Marrink, Hugh Martin, J Andrew McCammon, Kenneth Merz, Vicent Moliner, Adrian Mulholland, Sohail Murad, Athi N Naganathan, Shikha Nangia, Frank Noe, Agnes Noy, Julianna Oláh, Megan O’Mara, Mary Jo Ondrechen, José N Onuchic, Alexey Onufriev, Silvia Osuna, Anna R Panchenko, Sergio Pantano, Michele Parrinello, Alberto Perez, Tomas Perez-Acle, Juan R Perilla, B Montgomery Pettitt, Adriana Pietropalo, Jean-Philip Piquemal, Adolfo Poma, Matej Praprotnik, Maria J Ramos, Pengyu Ren, Nathalie Reuter, Adrian Roitberg, Edina Rosta, Carme Rovira, Benoit Roux, Ursula Röthlisberger, Karissa Y Sanbonmatsu, Tamar Schlick, Alexey K Shaytan, Carlos Simmerling, Jeremy C Smith, Yuji Sugita, Katarzyna Świderek, Makoto Taiji, Peng Tao, Julian Tirado-Rives, Inaki Tunón, Marc W Van Der Kamp, David Van der Spoel, Sameer Velankar, Gregory A Voth, Rebecca Wade, Ariel Warshel, Valerie Vaissier Welborn, Stacey Wetmore, Chung F Wong, Lee-Wei Yang, Martin Zacharias, Modesto Orozco, 2024, submitted [HAL][ArXiv]
      DOI: 10.48550/arXiv.2407.16584
    201. Non-Iterative Disentangled Unitary Coupled-Cluster based on Lie-algebraic structure.
      M. Haidar,
       O. Adjoua, S. Baddredine, A. Peruzzo, J.-P. Piquemal, 2024, submitted  [HAL][ArXiv]
      DOI: 10.48550/arXiv.2408.14289
    202. AMOEBA Polarizable Molecular Dynamics Simulations of Guanine Quadruplexes: from the c-Kit Proto-oncogene to HIV-1.
      D. S. El Ahdab, L. Lagardère, Z. Hobaika,  T. Jaffrelot Inizan, F.lerse, N. Gresh, R. G. Maroun, J.-P. Piquemal, 2024, submitted [HAL][BioRxiv]
      DOI: 10.1101/2024.08.28.610081
    203. TBA
      N. Mauger,T. Plé, O. Adjoua, L. Lagardère, S.Huppert, J.-P. Piquemal, 2024
      DOI:
    204. TBA
      A Lahouari, T. Plé, J. Richardi, J.-P. Piquemal, 2024
      DOI:
    205. TBA
      N. Ansari, C. Liu, F. Hédin, J. Hénin, J. Ponder, P. Ren, J.-P. Piquemal, L. Lagardère, K. El Hage, 2024