piquemalresearch.compiquemalresearch.com
  • Home
  • Research & Softwares
  • Publications
  • Collaborators and Friends
  • Present Group, Visitors and Alumni
  • Contact
piquemalresearch.compiquemalresearch.com
  • Home
  • Research & Softwares
  • Publications
  • Collaborators and Friends
  • Present Group, Visitors and Alumni
  • Contact

May 2025

Greedy gradient-free adaptive variational quantum algorithms on a noisy intermediate scale quantum computer

8 months ago 7 months agoJean-Philip Piquemalnews

Check our new paper published in Scientific Reports: Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer C. Feniou, M. Hassan, B. Claudon, A. Courtat, O....

Continue reading →

0 0 43

VTX: Real-time high-performance molecular structure and dynamics visualization software.

8 months agoJean-Philip Piquemalnews

Check this new paper published in Bioinformatics: VTX: Real-time high-performance molecular structure and dynamics visualization software. M. Maria, S. Guionnière, N. Dacquay, C. Plateau–Holleville, V. Guillaume, V. Larroque, J. Lardé,...

Continue reading →

0 0 48

Pushing the Accuracy Limit of Foundation Neural Network Models with Quantum Monte Carlo Forces and Path Integrals .

8 months ago 8 months agoJean-Philip Piquemalnews

Check this second preprint related to the FeNNix-Bio1 foundation machine learning model: Pushing the Accuracy Limit of Foundation Neural Network Models with Quantum Monte Carlo Forces and Path Integrals ....

Continue reading →

0 0 55

A Foundation Model for Accurate Atomistic Simulations in Drug Design

8 months agoJean-Philip Piquemalnews

Check this new important preprint (ChemRXiv) introducing the FeNNix-Bio1 foundation machine learning model: A Foundation Model for Accurate Atomistic Simulations in Drug Design. T. Plé, O. Adjoua, A. Benali, E. Posenitskiy,...

Continue reading →

0 0 94

Machine Learning for Computational Chemistry

8 months ago 3 months agoJean-Philip PiquemalSoftwares

Our group is interested in the development of new machine learning approaches for Computational chemistry. We focus on : algorithmic developments, ranging from machine-learning assisted parametrization of force fields and...

Continue reading →

0 0 203

Lambda-ABF-OPES: Faster Convergence with High Accuracy in Alchemical Free Energy Calculations

8 months agoJean-Philip Piquemalnews

Check our new paper in the Journal of Physical Chemistry Letters: Lambda-ABF-OPES: Faster Convergence with High Accuracy in Alchemical Free Energy Calculations. N. Ansari, F. Jing , A. Gagelin, F....

Continue reading →

0 0 64

AMOEBA Polarizable Molecular Dynamics Simulations of Guanine Quadruplexes: from the c-Kit Proto-oncogene to HIV-1

9 months ago 9 months agoJean-Philip Piquemalnews

Check our new paper in the Journal of Chemical Information and Modeling: AMOEBA Polarizable Molecular Dynamics Simulations of Guanine Quadruplexes: from the c-Kit Proto-oncogene to HIV-1. D. S. El Ahdab,...

Continue reading →

0 0 45

Recent Posts

  • FeNNix-Bio1 highlighted in GENCI’s Grand Challenges report 2025
  • Release of the FeNNixBio1 foundation machine learning model for drug design
  • New preprint: Practical protein-pocket hydration-site prediction for drug discovery on a quantum computer
  • New preprint: An Optimal Framework for Constructing Lie-Algebra Generator Pools: Application to Variational Quantum Eigensolvers for Chemistry
  • César Feniou’s PhD defense (december 11th 2025)

Recent Comments

    Archives

    • December 2025
    • November 2025
    • October 2025
    • July 2025
    • June 2025
    • May 2025
    • April 2025
    • March 2025
    • December 2024
    • November 2024
    • October 2024
    • August 2024
    • July 2024
    • November 2023
    • August 2023
    • July 2023
    • April 2023
    • February 2023
    • December 2018
    • April 2018
    • January 2018

    Categories

    • news
    • Non classé
    • Softwares

    Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    Jean-Philip Piquemal - Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, CC137, 4 Place Jussieu, Tour 12-13, 4ème étage, 75252 Paris Cedex 05, France. E-mail: jean-philip.piquemal at sorbonne-universite.fr Tel : (+33) 1.44.27.25.04