Bibliometric Indicators (02/2019)

h-index38 publications cited >= 38 times

———-> 38 (source Google Scholar)

———-> 35 (source ISI Web of Science (all databases), ResearcherID: B-9901-2009)

Updated Citation Metrics/Publication List through direct link to websites

ISI or Google scholar websites

    1. Theoretical study of phenol and 2-Aminophenol docking at a model of tyrosinase active site.
      J-P. Piquemal, J. Maddaluno, B. Silvi and C. Giessner-Prettre, New J. Chem., 2003, 27, 909-913.[PDF]
      DOI: 10.1039/B210307A
    2. Improved formulas for the calculation of the electrostatic contribution to intermolecular interaction energy from multipolar expansion of the electronic distribution.
      J-P. Piquemal, N. Gresh and C. Giessner-Prettre, J. Phys. Chem A, 2003, 107, 10353.[PDF]
      DOI: 10.1021/jp035748t
    3. Inclusion of the ligand field contribution in a polarizable molecular mechanics : SIBFA LF.
      J-P. Piquemal, B. Williams-Hubbard, N. Fey, R.J. Deeth, N.Gresh and C. Giessner-Prettre, J. Comput. Chem., 2003, 24, 1963 [PDF]
      DOI: 10.1002/jcc.10354
    4. A CSOV Study of the difference between HF and DFT Intermolecular Interaction Energy Values : the importance of the charge transfer contribution.
      J-P. Piquemal, A. Marquez, O. Parisel and C. Giessner-Prettre, J. Comput. Chem. 2005, 26, 1052 [PDF]
      DOI: 10.1002/jcc.20242
    5. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-b-lactamase by polarizable molecular mechanics. Validation on model binding sites with parallel quantum-chemistry computations.
      J. Antony, J-P. Piquemal and N. Gresh, J. Comput. Chem., 2005, 26, 1131 [PDF]
      DOI: 10.1002/jcc.20245 
      Supplementary materials 
      Download (WORD format .doc)
    6. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contribution of the intermolecular interaction energy. Comparisons with parallel ab initio computations.
      N. Gresh, J-P. Piquemal and M. Krauss, J. Comput. Chem., 2005, 26, 1113 [PDF]
      DOI: 10.1002/jcc.20244
    7. Intermolecular Electrostatic Energies using Density Fitting.
      G. A. Cisneros, J-P. Piquemal and T. A. Darden, J. Chem. Phys., 2005, 123, 044109 [PDF]
      DOI: 10.1063/1.1947192Also selected to appear in Virtual Journal of Biological Physics Research, 2005, 10, 4
    8. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using 4-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (Mn+ = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
      C. Gourlaouen, J-P. Piquemal, T. Saue and O. Parisel, J. Comput. Chem., 2006, 27, 2, 142 [PDF]
      DOI: 10.1002/jcc.20329 
    9. Towards a Force Field based on Density Fitting.
      J-P. Piquemal*, G. A. Cisneros, P. Reinhardt, N. Gresh and T. A. Darden,
      J. Chem. Phys., 2006, 124, 104101 [PDF]
      DOI: 10.1063/1.2173256 
      Also selected to appear in Virtual Journal of Biological Physics Research, 2006, 11, 6
    10. Comments on the nature of the bonding in oxygenated dinuclear copper enzymes models.
      J-P. Piquemal* and J. Pilme, J. Mol. Struct.: THEOCHEM, 2006, 764, 77 [PDF]
      DOI: 10.1016/j.theochem.2006.02.013
      Free access through Pubmed (NIH PMC article): Link
    11. Pb(H2O)]2+ and [Pb(OH)]+: four-component DFT calculations, correlated scalar relativistic CSOV energy decompositions, and topological analysis.
      C. Gourlaouen, J-P. Piquemal and O. Parisel, J. Chem. Phys., 2006, 124, 17, 174311 [PDF]
      DOI: 10.1063/1.2186994
    12. QM/MM Electrostatic Embedding with Continuous and Discrete Functions.,
      G. A. Cisneros, J-P. Piquemal and T. A. Darden, J. Phys. Chem. B. , 2006, 110, 13682 [PDF]
      DOI: 10.1021/jp062768x 
    13. Towards accurate solvation dynamics of divalent cations in water using the polarizable Amoeba force field: from energetics to structure.
      J-P. Piquemal*, L. Perera, G. A. Cisneros, P. Ren, L. G. Pedersen and T. A. Darden, J. Chem. Phys., 2006, 125, 054511 [PDF]
      DOI: 10.1063/1.2234774
    14. Generalization of the Gaussian Electrostatic Model: extension to arbitrary angular momentum, distributed multipoles and speedup with reciprocal space methods.
      G. A. Cisneros, J-P. Piquemal and T. A. Darden, J. Chem. Phys., 2006, 125, 184101 [PDF]
      DOI: 10.1063/1.2363374
      Also selected to appear in Virtual Journal of Biological Physics Research, 2006, 12, 10
    15. Binding of 5-Phospho-D-Arabinonohydroxamate and 5-Phospho-D-Arabinonate Inhibitors to Zinc Phosphomannose Isomerase from Candida albicans studied by polarizable Molecular Mechanics and Quantum mechanics.
      C. Roux, N. Gresh, L. Perera, J-P Piquemal and L. Salmon, J. Comput. Chem., 2007, 28, 938 [PDF]
      DOI: 10.1002/jcc.20586 
      Supplementary materials : 
      Download (format .pdb)
    16. Towards a separate reproduction of the contributions to the Hartree-Fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential.
      J-P Piquemal*, H. Chevreau and N. Gresh, J. Chem. Theory. Comput., 2007, 3, 824 [PDF]
      DOI: 10.1021/ct7000182 
    17. Key role of the polarization anisotropy of water in modeling classical polarizable force fields.
      J-P Piquemal*, R. Chelli, P. Procacci and N. Gresh, J. Phys. Chem. A, 2007, 111, 8170 [PDF]
      DOI: 10.1021/jp072687g 
    18. The Specificity of Acyl Transfer from 2-Mercaptobenzamide Thioesters to the HIV-1 Nucleocapsid Protein.
      L. M. M. Jenkins, T. Hara, S. R. Durell, R. Hayashi, J. K. Inman, J-P Piquemal, N. Gresh, E. Appella, J. Am. Chem. Soc., 2007, 129, 11067 [PDF]
      DOI: 10.1021/ja071254o 
    19. Anisotropic, polarizable molecular mechanics studies of inter-, intra-molecular interactions, and ligand-macromolecule complexes. A bottom-up strategy.
      N. Gresh, G. A. Cisneros, T. A. Darden and J-P Piquemal*, J. Chem. Theory. Comput., 2007, 3, 1960. Invited Paper [PDF]
      DOI: 10.1021/ct700134r 
      Top 20 All Time Most-Cited Articles published by JCTC(ACS)
      Free access through Pubmed (NIH PMC article): Link
    20. Numerical fitting of molecular properties to Hermite Gaussians.
      G. A. Cisneros, D. Elking, J-P Piquemal and T. A. Darden, J. Phys. Chem. A, 2007, 111, 12049.[PDF]
      DOI: 10.1021/jp074817r 
      Free access through Pubmed (NIH PMC article): Link
    21. Understanding lead chemistry from topological insights:the transition between holo- and hemidirected structures within the [Pb(CO)n]2+ model series.
      C. Gourlaouen, H. Gérard, J.-P. Piquemal and O. Parisel, 2008, Chem. Eur. Journ., 14, 2730 [PDF]
      DOI: 10.1002/chem.200701265 
    22. Advancing beyond Charge Analysis using the Electronic Localization Function: Chemically Intuitive Distribution of Electrostatic Moments.
      J. Pilme and J-P Piquemal*, 2008, J. Comput. Chem., 29, 1440. [PDF]
      DOI: 10.1002/jcc.20904 
    23. Simple formulas for improved point-charge electrostatics in classical force fields and hybrid Quantum Mechanical/Molecular Mechanical embedding.
      G. A. Cisneros, S. Na-Im Tholander, D. Elking, T. A. Darden, O. Parisel and J-P Piquemal*, Int. J. Quant. Chem.,2008, 108, 1905.[PDF]
      DOI: 10.1002/qua.21675 
      Free access through Pubmed (NIH PMC article): Link
    24. What can be learnt on biological or biomimetic systems with the topological analysis of the electron localization function?
      J-P Piquemal, J. Pilmé, O. Parisel, H. Gérard, I. Fourré, J. Bergès, C. Gourlaouen, A. de la Lande, M. C. van Severen and B. Silvi, Int. J. Quant. Chem., 2008, 108, 1951.[PDF]
      DOI: 10.1002/qua.21711
    25. Energy analysis of Zn polycoordination in a metalloprotein environment and of the role of a neighboring aromatic residue. What is the impact of polarization?
      B. de Courcy, J-P Piquemal* and N. Gresh, J. Chem. Theo. Comput., 2008, 4, 1659 .[PDF]
      DOI: 10.1021/ct800200j
    26. Fragment-localized Kohn-Sham orbitals via a Singles-CI procedure and application to local properties and intermolecular energy decomposition analysis
      P. Reinhardt, J-P Piquemal and A. Savin, J. Chem. Theo. Comput., 2008, 4, 2020 [PDF]
      DOI: 10.1021/ct800242n
    27. Design of next generation polarizable force fields from ab initio computations: beyond point charges.
      G. A. Cisneros, T. A. Darden, N. Gresh, P. Reinhardt, O. Parisel, J. Pilmé and J-P Piquemal* in Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications, for the Book Series: Challenges and Advances in Computational Chemistry and Physics , ed. D. M. York and T.-S. Lee, 2009, 137-172, Springer Verlag. Invited Book Chapter, [PDF]
    28. Progress towards accurate molecular modeling of metal complexes using polarizable force fields.
      R. Chaudret, S. Ulmer, M-C van Severen, N. Gresh, O. Parisel, G. A. Cisneros , T. A. Darden and J-P Piquemal*, AIP Conf. Proc., 2009, 1102, 185.[PDF]
      in Proceedings of THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY 2008 Shanghai conference.
    29. Trends in ns2 np0 [M(CO)]p+ complexes: from germanium to element 114 (Uuq).
      C. Gourlaouen, O. Parisel and J-P Piquemal, Chem. Phys. Lett. 2009, 469, 38-42 [PDF]
      DOI: 10.1016/j.cplett.2008.12.040
    30. Importance of lone pair interactions/redistribution in hard and soft ligands within the active site of alcohol dehydrogenase Znmetalloenzyme: Insights from Electron Localization Function.
      B. de Courcy, N. Gresh and J-P Piquemal*, Interdiscip. Sci. Comput. Life Sci., 2009, 1, 55 [PDF]
      DOI: 10.1007/s12539-008-0027-0
    31. New intermolecular benchmark calculations on the water dimer: SAPT and supermolecular post-Hartree-Fock approaches.
      P. Reinhardt and J-P Piquemal*, Int. J. Quant. Chem., 2009, 109, 3259. [PDF][Sup-Infos]
      DOI: 10.1002/qua.22299
    32. Dioxygen Activation by Mononuclear Copper Enzymes: Insights From a Tripodal Ligand Mimicking their CuM Coordination Sphere
      A. de la Lande, D. Salahub, V. Moliner, H. Gerard, J-P Piquemal and O. Parisel, 2009, Inorg. Chem.(Communication), 4, 7003. [PDF]
    33. Beyond holo/hemidirectionality in Pb(II) complexes: can the valence lone pair be bisdirected?
      M-C. van Severen, J-P. Piquemal* and O. Parisel, Chem. Phys. Lett., 2009, 478, 17 [PDF]
      DOI: 10.1016/j.cplett.2009.07.036
    34. Synthesis and evaluation of non-hydrolyzable D-mannose 6- phosphate surrogates reveal 6-deoxy-6-dicarboxymethyl-Dmannose as a new strong inhibitor of phosphomannose isomerases
      J. Foret, B. de Courcy, N. Gresh, J-P. Piquemal, L. Salmon , Bioorg. Med. Chem., 2009, 17, 7100. [PDF]
      DOI: 10.1016/j.bmc.2009.09.0052010 
    35. The Gaussian Multipole Model
      D. Elking, G. A. Cisneros, J-P Piquemal, T. A. Darden and L. G. Pedersen,
      J. Chem. Theo. Comput., 2010, 6, 190 [PDF]
      DOI: 10.1021/ct900348b
    36. Theoretical Study of the Docking of Competitive Inhibitors at a Model of Tyrosinase enzyme Active Site: joint broken symmetry/spin-flip DFT study.
      A. de la Lande, J. Maddaluno, O. Parisel, T. A. Darden and J-P Piquemal*, Interdiscip. Sci. Comput. Life Sci., 2010, 2, 3 [PDF]
      DOI: 10.1007/s12539-010-0096-8
      Free access through Pubmed (NIH PMC article): Link
    37. Polarizable water molecules in ligand-macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase
      B. de Courcy, J-P Piquemal*, C. Garbay and N. Gresh, J. Am. Chem. Soc., 2010, 132, 3312. [PDF]
      DOI: 10.1021/ja9059156
    38. Lead substitution in synaptotagmin: a case study.
      M-C. van Severen, J-P Piquemal, and O. Parisel, J. Phys. Chem. B, 2010, 114, 4005 [PDF]
    39. Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. A parallel quantum-chemical and polarizable molecular mechanics study.
      N. Gresh, N. Audiffren, J-P. Piquemal, J. de Ruyck, M. Ledecq, J. Wouters, J. Phys. Chem. B, 2010, 114, 4884 [PDF]
    40. Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. I. Application to blood coagulation: direct cation-protein electronic effects vs. indirect interactions through water networks
      B. de Courcy, L. G. Pedersen, O. Parisel, N. Gresh, B. Silvi, J. Pilmé and J-P Piquemal*, J. Chem. Theory. Comput., 2010, 6, 1048 [PDF]
      DOI: 10.1021/ct100089s
    41. Editorial: Quantum Mechanical Modeling of Biological Systems.
      J-P Piquemal and Dennis Salahub, Interdiscip. Sci. Comput. Life Sci., 2010, 2, 1 [PDF]
      DOI: 10.1007/s12539-010-0001-5
    42. Polarizable molecular dynamics simulation of Zn(II) in water using the polarizable AMOEBA force field.
      J. Wu., J.-P. Piquemal*, R. Chaudret, P. Reinhardt and P. Ren, J. Chem. Theo. Comput., 2010, 6, 2059.[PDF]
    43. Gas phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory
      E. Gloaguen, B. de Courcy, J-P Piquemal*, J. Pilmé, O. Parisel, R. Pollet, H. S. Biswal, F. Piuzzi, B. Tardivel, M. Broquier, M. Mons*, J. Am. Chem. Soc.(Communication), 2010, 132, 11860-11863. [PDF]
      DOI: 10.1021/ja103996q
      A noter: Fait Marquant CEA/SPAM/IRAMIS 2010: Lien
    44. Importance of backdonation in [M(CO)]p+ complexes isoelectronic to [Au(CO)]+.
      C. Gourlaouen, O. Parisel and J-P Piquemal*, J. Chem. Phys., 2010, 133, 124310.[PDF]
      DOI: 10.1063/1.34912662011 
    45. The reaction mechanism of type I phosphomannose isomerases: new informations from polarizable molecular mechanics and inhibition studies
      C. Roux, F. Bhatt, J. Forest, B. de Courcy, N. Gresh, J-P. Piquemal, C. J. Jeffery, L. Salmon, Proteins: Struct. Func. Bio., 2011, 79, 203-220 .[PDF]
      DOI: 10.1002/prot.22873
    46. The Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n]2+ Complexes and Development of a Pb2+ Polarizable Force Field.
      M. Devereux, M.-C. van Severen, O. Parisel, J-P Piquemal*, N. Gresh, J. Chem. Theo. Comput., 2011, 7, 138-147.[PDF]
      DOI: 10.1021/ct1004005
    47. Interactions within the Alcohol Dehydrogenase (ADH) Zn(II)-metalloenzyme active site: interplay between subvalence, electron correlation/dispersion and charge transfer/induction effects
      B. de Courcy, J-P. Dognon, C. Clavaguera, N. Gresh and J-P. Piquemal*, Int. J. Quant. Chem.,2011, 111, 1213. [PDF]
      DOI: 10.1002/qua.22760
    48. Editorial: From Quantum Mechanics to Force Fields: new methodologies for the classical simulation of complex systems.
      J.-P. Piquemal and K. D. Jordan, Theo. Chem. Acc., 2012, 131, 1207 ( Special Issue From Quantum Mechanics to Force Fields)[PDF]
      DOI: 10.1007/s00214-012-1207-x
    49. Unraveling Low Barrier Hydrogen Bonds in complex systems using a simple quantum topological criterion
      R. Chaudret, G. A. Cisneros, O. Parisel, J-P. Piquemal*, Chem. Eur. J.(Communication), 2011, 17, 2833.[PDF]
      DOI: 10.1002/chem.201002978
    50. Spin-driven activation of dioxygen in various metalloenzymes and their inspired models.
      A. de la Lande, D. R. Salahub, J. Maddaluno, A. Scemama, J. Pilme, O. Parisel, H. Gerard, M. Caffarel and J-P Piquemal*, J. Comput. Chem. (Rapid Communication), 2011, 32, 1178.[PDF]
      DOI: 10.1002/jcc.21698
    51. NCIPLOT: a program for plotting non-covalent interaction regions
      J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D. Beratan and W. Yang, J. Chem. Theory. Comput., 2011, 7, 625. [PDF]
      DOI: 10.1021/ct100641a
      –>Web of Science highly cited paper<–
    52. Electron Pair Localization Function (EPLF) for Density Functional Theory and ab initio wave function-based methods : a new tool for chemical interpretation
      A. Scemama, R. Chaudret, M. Caffarel, J-P. Piquemal, J. Chem. Theor. Comput., 2011, 7, 618.[PDF]
      DOI: 10.1021/ct1005938
    53. Many-body Exchange-Repulsion in Polarizable Molecular Mechanics. I. Orbital based approximations and application to hydrated metal cations complexes.
      R. Chaudret, N. Gresh, O. Parisel, J-P. Piquemal*, J. Comput. Chem., 2011, 32, 2949. [PDF]
      DOI: 10.1002/jcc.21865
    54. Correlation between electron localization and metal ion mutagenicity in DNA synthesis from QM/MM calculations.
      R. Chaudret, J-P. Piquemal, G. A. Cisneros, Phys. Chem. Chem. Phys., 2011, 13, 11239 [PDF]
      DOI: 10.1039/c0cp02550j
    55. Polarizable water molecules in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates.
      N. Gresh, B. de Courcy, J.-P. Piquemal, J. Foret, S. Courtiol-Legourd, L. Salmon, J. Phys. Chem. B, 2011, 115, 8304. [PDF]
      DOI: 10.1021/jp2024654
    56. Enforcing hemidirectionality in Pb(II) complexes: the importance of anionic ligands.
      M.-C. van Severen, J.-P. Piquemal* and O. Parisel, Chem. Phys. Lett., 2011, 510, 27 [PDF]
      DOI: 10.1016/j.cplett.2011.04.096
    57. Competitive ligand / chelate binding in [Cu(TMPA)]+ and [Cu(tren)]+ based complexes,
      L. Bonniard, S. Ulmer, A. de la Lande, J.-P. Piquemal, O. Parisel and H. Gérard, Cat. Tod., 2011, 177, 79.[PDF]
      DOI: 10.1016/j.cattod.2011.07.015 
    58. Towards accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas phase energetics to hydration free energies
      A. Marjolin, C. Gourlaouen, C. Clavaguera, N. Gresh, P. Y. Ren, J. Wu, J.-P. Dognon and J.-P. Piquemal, Theo. Chem. Acc., 2012, 131, 1198. [PDF](Special Issue From Quantum Mechanics to Force Fields)
      DOI: 10.1007/s00214-012-1198-7
      selected to appear in Highlights in Theoretical Chemistry, Vol. 3, 2012, Series Editors: Cramer, Christopher J., Truhlar, Donald G., Springer. [Link]
      DOI: 10.1007/
    59. Toward a ligand specific of Pb2+ with respect to the Zn2+ and Ca2+ cations: A track from quantum chemistry
      M.-C. van Severen, R. Chaudret, O. Parisel, J.-P. Piquemal, Chem. Phys. Lett.(Cover), 2012, 532, 9 [PDF]
      DOI: 10.1016/j.cplett.2012.02.037
    60. Modeling Structural Coordination and Ligand Binding in Zinc Proteins with the AMOEBA Polarizable Potential
      J. Zhang, W. Yang, J.-P. Piquemal, P. Ren, J. Chem. Theo. Comput., 2012, 8, 1314[PDF]
      DOI: 10.1021/ct200812y
    61. Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions
      N. Gillet, R. Chaudret, J. Contreras-Garcia, W. Yang, B. Silvi and J.-P. Piquemal, J. Chem. Theory. Comput., 2012, 8, 3993 [PDF]
      DOI: 10.1021/ct300234g
    62. Ionic interactions: comparative topological approach
      J. Contreras-Garcia, M. Calatayud, J.-P. Piquemal and J.M. Recio, Comp. Theo. Chem., 2012, 998, 193.[PDF]
      DOI: j.comptc.2012.07.043
    63. Unraveling interactions in large complex systems using quantum chemistry interpretative techniques and new generation polarizable force fields
      R Chaudret, B de Courcy, A Marjolin, M-C van Severen, PY Ren, JC Wu, O Parisel, J-P Piquemal, AIP Conf. Proc., 2012, 1504, 699
      DOI: 10.1063/1.4771791
    64. Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds?
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, J. Comput. Chem., 2013, 34, 1125 [PDF]
    65. Towards Energy Decomposition Analysis for open and closed shell f-elements mono aqua complexes.
      A. Marjolin, C. Gourlaouen, C. Clavaguera, J.-P. Dognon, J.-P. Piquemal, Chem. Phys. Lett., 2013, 563, 25 [PDF]
    66. Understanding Structure and Electronic Properties of Th4+ – Water Complexes
      C. Gourlaouen, C. Clavaguera, A. Marjolin, J.-P. Piquemal, J.-P. Dognon , Can. J. Chem., 2013, 91, 821-831.[PDF]
      DOI: 10.1139/cjc-2012-0546
    67. Further refinements of next-generation force-fields: non empirical localization of off-centered-points in molecules.
      R. Chaudret, N. Gresh, G. A. Cisneros, A. Scemama, J-P. Piquemal, Can. J. Chem., 2013, 91, 804-810.[PDF]
      DOI: 10.1139/cjc-2012-0547
    68. Understanding the chemistry of lead at a molecular level: the Pb(II) 6s6p lone pair can be bisdirected in proteins.
      M.-C. van Severen, U. Ryde, O. Parisel, J.-P. Piquemal, J. Chem. Theory. Comput., 2013, 9, 2416-2424[PDF]
      DOI: 10.1021/ct300524v
    69. Towards a Deeper understanding of Enzyme Reactions using the coupled ELF/NCI Analysis: Application to DNA repair enzymes
      D. Fang, R. Chaudret, J.-P. Piquemal*, G. A. Cisneros, J. Chem. Theory. Comput. 2013, 9, 2156-2160.[PDF]
      DOI: 10.1021/ct400130b
    70. Are bond critical points really critical for hydrogen bonding?
      J. R. Lane, J. Contreras-Garcia, J.-P. Piquemal, B. J. Miller, H. G. Kjaergaar, J. Chem. Theory Comput., 2013, 9, 3263 [PDF]
      DOI: 10.1021/ct400420r
    71. Unravelling Non Covalent Interactions within Flexible Biomolecules: from electron density topology to gas phase spectroscopy
      R. Chaudret, B. de Courcy,J. Contreras-Garcia, E. Gloaguen, A. Zehnacker-Rentien, M. Mons, J.-P. Piquemal, Phys. Chem. Chem. Phys., 2014, 16, 9876, [PDF]
      DOI: 10.1039/C3CP52774C
    72. La surface d’energie potentielle vue par les champs de forces
      I. Demachy and J.-P. Piquemal, l’Actualite Chimique, 2014, 388-389, 37-42 [PDF]
      [LINK to Journal], [HAL]
    73. Modeling Organochlorine Compounds and the sigma hole Effect Using a Polarizable Field
      X. Mu, Q. Wang, L.P. Wang, S. D. Fried, J.-P. Piquemal, K. N. Dalby, P. Y. Ren, J. Phys. Chem. B, 2014, 118, 6456-6465 [PDF]
      DOI: 10.1021/jp411671a
    74. Quantum Calculations in Solution for Large to Very Large Molecules: a New Linear Scaling QM/Continuum Approach
      F. Lipparini, L. Lagardere, G. Scalmani, B. Stamm, E. Cances, Y. Maday, J.-P. Piquemal, M. Frisch, B. Mennucci, J. Phys. Chem. Lett, 2014, 5, 953-958 [PDF]
      DOI: 10.1021/jz5002506
    75. GEM*: A Molecular Electronic Density–Based Force Field for Classical Molecular Dynamics Simulations
      R. Duke, O. Starovoytov, J.-P. Piquemal, and G. A. Cisneros, J. Chem. Theory Comput., 2014, 10, 1361-1365 [PDF]
      DOI: 10.1021/ct500050p
    76. Scalable evaluation of the polarization energy and associated forces in polarizable molecular dynamics: I. towards massively parallel direct space computations
      F. Lipparini, L. Lagardere, B. Stamm, E. Cances, M. Schnieders, P. Y. Ren, Y. Maday, J.-P. Piquemal, J. Chem. Theory. Comput., 2014, 10, 1638-1651[PDF]
      DOI: 10.1021/ct401096t
    77. Revisiting H2O Nucleation around Au+ and Hg2+: the Peculiar Pseudo-Soft Character of the gold cation.
      R. Chaudret, J. Contreras-Garcia, M. Delcey, O. Parisel, W. Yang, J.-P. Piquemal, J. Chem. Theory. Comput., 2014, 10, 1900-1909 [PDF]
      DOI: 10.1021/ct4006135
    78. DFT steric based energy decomposition analysis of intermolecular interactions
      D. Fang, J.-P Piquemal, J.-P. Piquemal, G.A. Cisneros, S. Liu, TCA, 2014, 133, 1484 [PDF]
    79. A Supervised Fitting Approach to Force Field Parametrization with Application to the SIBFA Polarizable Force Field
      M. Devereux, N. Gresh, J.-P. Piquemal and M. Meuwly, J. Comput. Chem., 2014, 35, 1577-1591 (COVER)
      DOI: 10.1002/jcc.23661
    80. S/G-1: An Ab Initio Force-field Blending Frozen Hermite Gaussian Densities and Distributed Multipoles. Proof of Concept and First Applications to Metal Cations.
      R. Chaudret, N. Gresh, C. Narth, L. Lagardere, T. A. Darden, G. A. Cisneros, J-P. Piquemal, J. Phys. Chem. A, 2014, 118, 7598-7612
      DOI: 10.1021/jp5051657
    81. Synthesis and structure-activity relationship of non peptidic antagonists of Neuropilin-1 receptor.
      Liu, W-Q., Megale, V., Borriello, L., Leforban, B., Montes, M., Goldwaser, E., Gresh,N., Piquemal, J-P., Hadj-Slimane, R., Hermine, O., Garbay, C., Raynaud, F., Lepelletier, Y., Demange, L., Synthesis and structure-activity relationship of non-peptidic antagonists of Neuropilin-1 receptor, Bioorganic & Medicinal Chemistry Letters, 2014, 24, 4254-4259.
      DOI: 10.1016/j.bmcl.2014.07.028
    82. Polarizable Molecular Mechanics studies of Cu(I)/Zn(II) Superoxide Dismutase. Bimetallic binding site and structured waters.
      N. Gresh, K. Hage, D. Perahia, J-P. Piquemal, C.Berthomieu, D. Berthomieu.,J. Comput. Chem., 2014, 35, 2096-2106
      DOI: 10.1002/jcc.2372410.
    83. Characterizing Molecular Interactions in Chemical Systems.
      D. Gunther, R. A. Boto, J. Contreras-Garcia, JP. Piquemal, J. Thierny, IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 2476 – 2485.
      DOI: 10.1109/TVCG.2014.2346403
    84. Conformational analysis of a polyconjugated protein-binding ligand by joint ab initio quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability.
      E. Goldwaser, B. de Courcy, L. Demange, C. Garbay, F. Raynaud, R. Hadj-Slimane, J.-P. Piquemal, N. Gresh, J. Mol. Mod., 2014, 20, 2472 PDF]
      DOI: 10.1007/s00894-014-2472-5
    85. Hydration Gibbs Free Energies of Open and Closed Shell Trivalent Lanthanide and Actinide Cations from Polarizable Molecular Dynamics
      A. Marjolin, C. Gourlaouen, C. Clavaguera, P. Y. Ren, J.-P. Piquemal, J.-P. Dognon, J. Mol. Mod., 2014, 20, 2471[PDF]
      DOI: 10.1007/s00894-014-2471-6
    86. Substituent-Modulated Affinities of Halobenzene Derivatives to the HIV-1 Integrase Recognition Site. Analyses of the Interaction Energies by Parallel Quantum Chemical and Polarizable Molecular Mechanics.
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, 2014, J. Phys. Chem. A, 118, 9772-9782
      DOI: 10.1021/jp5079899
    87. Quantum, Classical and Hybrid QM/MM Calculations in Solution: General Implementation of thE ddCOSMO Linear Scaling Strategy
      F. Lipparini, G. Scalmani, L. Lagardere, B. Stamm, E. Cances, Y. Maday, J-P. Piquemal, M. J. Frisch, B. Mennucci, J. Chem. Phys., 2014, 141, 184108
      DOI: 10.1063/1.4901304
    88. Could the ‘Janus-like’ properties of the halobenzene CX bond (X=Cl, Br) be leveraged to enhance molecular recognition?
      K. El Hage, J.-P. Piquemal, Z. Hobaika, R. G. Maroun, N. Gresh, J. Comput. Chem., 2015, 36, 210-221 (COVER)
      DOI: 10.1002/jcc.23786
    89. Quantum-chemistry based calibration of the alkali metal cation series (Li+ Cs+) for large-scale polarizable molecular mechanics/dynamics simulations.
      T. Dudev, M. Devereux,M. Meuwly, C. Lim, J-P. Piquemal, N. Gresh, J. Comput. Chem., 2015, 36, 285-302 (COVER)
      DOI: 10.1002/jcc.23801
    90. Entasis Through Hook-and-Loop Fastening in a Glycoligand with Cumulative Weak Forces Stabilizing CuI
      L. Garcia, F. Cisnetti, N. Gillet, R. Guillot, M. AumontNicaise, J.P. Piquemal, M. Desmadril, F. Lambert, C. Policar., J. Am. Chem. Soc., 2015, 137, 1141-1146
      DOI: 10.1021/ja510259p
    91. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent.
      F. Lipparini, L. Lagardere, C. Raynaud, B. Stamm, E. Cances, M. Schnieders, P. Y. Ren, B. Mennucci, Y. Maday, J.-P. Piquemal, J. Chem. Theory. Comput., 2015, 11, 623-634 [PDF]
      DOI: 10.1021/ct500998q
    92. Addressing the issues of non-isotropy and non-additivity in the development of quantum chemistry-grounded polarizable molecular mechanics.
      Nohad Gresh, Krystel El Hage, Elodie Goldwaser, Benoit de Courcy, Robin Chaudret, David Perahia, Christophe Narth, Louis Lagardere, Filippo Lipparini, Jean-Philip Piquemal, 2015, in Quantum Modeling of Complex Molecular Systems, vol. 21, pp 1-49, Editors: J. L. Rivail, M. Ruiz-Lopez and X. Assfeld, Springer.[HAL]
      DOI: 10.1007/978-3-319-21626-3_1
    93. Polarizable Force Fields for Biomolecular Modeling
      Y. Shi, M. Schnieders, P. Y. Ren, J.-P. Piquemal Reviews in Computational Chemistry, 2015, Vol. 28, 51-84, Wiley
      DOI: 10.1002/9781118889886.ch2
    94. Bridging Organometallics and Quantum Chemical Topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination
      B. de Courcy, E. Derat, J.-P. Piquemal, J. Comput. Chem., 2015, 36, 1167-1175 [PDF]
      DOI: 10.1002/jcc.23911
    95. A General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field
      Q. Wang, J. A. Rackers, C. He, R. Qi, C. Narth, L. Lagardere, N. Gresh, J. W. Ponder, J-P. Piquemal, P. Y. Ren, J. Chem. Theory. Comput. 2015, 11, 2609-2618
      DOI: 10.1021/acs.jctc.5b00267
    96. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald
      L. Lagardere, F. Lipparini, E. Polack, B. Stamm, E. Cances, M. Schnieders, P. Y. Ren, Y. Maday, J.-P. Piquemal, J.Chem. Theory. Comput., 2015, 11, 2589-2599
      DOI: 10.1021/acs.jctc.5b00171
    97. Approaching the double-faceted nature of the CX bond in halobenzenes with a bifunctional probe.
      Krystel El Hage, Jean-Philip Piquemal, Zeina Hobaika, Richard G. Maroun, Nohad Gresh, Chem. Phys. Lett., 2015, 637, 51-57
      DOI: 10.1016/j.cplett.2015.07.047
    98. Stacked and H-bonded cytosine dimers. Analysis of the intermolecular interaction energies by parallel quantum chemistry and polarizable molecular mechanics.
      N. Gresh, J. E. Sponer, M. Devereux, B. de Courcy, J-P. Piquemal, J. Sponer, J. Phys. Chem. B, 2015, 119, 9477-9495
      DOI: 10.1021/acs.jpcb.5b01695
    99. Butanethiol adsorption and dissociation on Ag (111): a DFT study
      Aixiao Li, Jean-Philip Piquemal, Johannes Richard, Monica Calatayud, Surf. Sci., 2016, 646, 247-252
      DOI: 10.1016/j.susc.2015.06.009/
    100. Interpretation of the reduced density gradient.. R. A. Boto, J. Contreras-Garcia, J. Tierny, J- P. Piquemal, Mol. Phys., 2016, 114, 1406-1414. DOI: 10.1080/00268976.2015.1123777
    101. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.Christophe Narth, Louis Lagardere, Etienne Polack, Nohad Gresh, Qintao Wang, R. Bell, David, Joshua . Rackers, Jay W. Ponder, Pengyu Y. Ren, Jean-Philip Piquemal ,J. Comput. Chem., 2016, 37(5), 494-506(COVER) [HAL]. DOI: 10.1002/jcc.24257
    102. LICHEM: A QM/MM Program for Simulations with Multipolar and Polarizable Force Fields. E. G. Kratz, A. R. Walker, L. Lagardere, F. Lipparini, J.-P. Piquemal and G. A. Cisneros, J. Comput. Chem., 2016, 37(11), 1019-1029 (COVER).DOI: 10.1002/jcc.24295
    103. A complete NCI perspective: from new bonds to reactivity
      Christophe Narth, Zeina Maroun, Roberto A. Boto, Robin Chaudret, Marie-Laure Bonnet, Jean-Philip Piquemal and Julia Contreras-Garcia,2016 in Applications of Topological Methods in Molecular Chemistry, Challenges and Advances in Computational Chemistry and Physics series, Edts: Esmail Alikhani, Remi Chauvin, Christine Lepetit, and Bernard Silvi, Springer, 2016[HAL]
      DOI: 10.1007/978-3-319-29022-5_18
    104. Status of the Gaussian Electrostatic Model a Density-Based Polarizable Force Field.
      Jean-Philip Piquemal, G. Andres Cisneros, 2016 in Many-body effects and electrostatics in Biomolecules, Eds. Qiang Cui, Pengyu Ren and Markus Meuwly, chapter 8, p269-299, Pan Standford Publishing, ISBN:9789814613927 [ HAL][PDF][[link]
      DOI: 10.1201/b21343-11
    105. Study of the inhibition mechanism of HIV-1 integrase by diketoacids molecules
      L. El Khoury, Z. Hobaika, K. El Hage, S. Fermandjian, J.-P. Piquemal, N. Gresh, R. G. Maroun, Journal of Virus Eradication, 2016, 2, supplement 1, 14
      [Full text]
    106. A QM/MM approach using the AMOEBA polarizable embedding: from ground state energies to electronic excitations
      D.Loco, E. Polack, S. Caprasecca, L. Lagardere, F. Lipparini, J.-P. Piquemal, B. Mennucci, J. Chem. Theory. Comput., 2016, 12, 3654-3661
      DOI: 10.1021/acs.jctc.6b00385
    107. Complexes of a Zn-Metalloenzyme Binding Site with Hydroxamate-Containing Ligands. A Case for Detailed Benchmarkings of Polarizable Molecular Mechanics/ Dynamics Potentials When the Experimental Binding Structure is Unknown
      Nohad Gresh, David Perahia, Benoit de Courcy, Johanna Foret, Celine Roux, Lea El-Khoury, Jean-Philip Piquemal, Laurent Salmon, J. Comput. Chem., 2016, 37, 2770-2782
      DOI: 10.1002/jcc.245032017
    108. An Optimized Charge Penetration Model for Use with the AMOEBA Force Field
      J. A. Rackers, Q. Wang, J.-P. Piquemal, P. Ren, J. W. Ponder, Phys. Chem. Chem. Phys. (Special issue : Insights from advanced methods in molecular dynamics ), 2017, 19, 276-291
      DOI: 10.1039/C6CP06017J
    109. Truncated Conjugate Gradient (TCG): an optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations
      F. Aviat, A. Levitt, Y. Maday, B. Stamm, P. Y. Ren, J. W. Ponder, L. Lagardere, J.-P.Piquemal, J. Chem. Theory. Comput., 2017, 13, 180-190 [HAL]
      DOI: 10.1021/acs.jctc.6b00981
    110. Channeling Through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+ , K+ and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential
      N. Gresh, S. Naseem-Khan, L. Lagardère, J.-P. Piquemal, J. E. Sponer, J. Sponer, J. Phys. Chem. B, 2017, 121, 3997-4014
      DOI: 10.1021/acs.jpcb.7b01836
    111. The inhibition process of HIV-1 integrase by diketoacids molecules: understanding the factors governing the better efficiency of dolutegravir.
      L. El Khoury, Jean-Philip Piquemal , Serge Fermandjian, Richard G. Maroun, Nohad Gresh, Zeina Hobaika, BBRC, 2017, 488, 433-438
      DOI: 10.1016/j.bbrc.2017.05.001
    112. Importance of explicit smeared lone-pairs in anisotropic polarizable molecular mechanics. Torture track angular tests for exchange-repulsion and charge transfer contributions
      L. El Khoury, S. Naseem-Khan, K. Kwapien, D. Perahia, Z. Hobaika, R. Maroun, J.-P. Piquemal, N. Gresh, J. Comput. Chem., 2017, 38, 1897-1920
      DOI: 10.1002/jcc.24830
    113. Capturing Many-body Interactions with Classical Dipole Induction Models
      C. Liu, R. Qi, Q. Wang, J.-P. Piquemal, P. Ren, J. Chem. Theory. Comput., 2017, 13, 2751-2761
      DOI: 10.1021/acs.jctc.7b00225
    114. Calibration of 1,2,4-Triazole-3-Thione, an Original Zn-Binding Group of Metallo-betaLactamase Inhibitors. Validation of a Polarizable MM/MD Potential by Quantum Chemistry
      K. Kwapien, M. Damergi, S. Nader, L. El Khoury, Z. Hobaika, R. Maroun, J.-P. Piquemal, L. Gavara, D. Berthomieu, J.-F. Hernandez, N. Gresh, J. Phys. Chem. B, 2017, 121, 6295-6312
      DOI: 10.1021/acs.jpcb.7b01053
    115. Tinker-OpenMM : Absolute and Relative Alchemical Free Energies using AMOEBA on GPUs
      M. Harger, D. Li, Z. Wang, K. Dalby, L. Lagardère, J.-P. Piquemal, J. Ponder, P. Ren, J. Comput. Chem., 2017, 38, 2047-2055[PDF]
      DOI: 10.1002/jcc.24853
    116. A simple isomerisation of the purine scaffold of a kinase inhibitor, roscovitine, affords a ten- fold enhancement of its affinity for CDK5 and CDK7. Could this be traced back to conjugation-induced stiffenings/loosenings of rotational barriers?”
      K. El Hage, J.-P. Piquemal, N. Oumata, L. Meijer, H. Galons, N. Gresh, ACS OMega, 2017, 2, 3467-3474
      DOI: 10.1021/acsomega.7b00471 
    117. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding
      Daniele Loco, Louis Lagardere, Stefano Caprasecca, Filippo Lipparini, Benedetta Mennucci, Jean-Philip Piquemal, J. Chem. Theory. Comput, 2017, 13, 4025-4033
      DOI: 10.1021/acs.jctc.7b00572
    118. The Truncated Conjugate Gradient (TCG), a Non-iterative/Fixed-cost Strategy for Computing Polarization in Molecular Dynamics: Fast Evaluation of Analytical Forces
      F. Aviat, L. Lagardere, J.P. Piquemal, J. Chem. Phys., 2017, 147, 161724(special issue: from Quantum Mechanics to Force fields)[HAL]
      DOI: 10.1063/1.4985911
    119. Preface: Special Topic From Quantum Mechanics to Force Fields
      J.-P. Piquemal, K. D. Jordan, J. Chem. Phys., 2017, 147, 161401 (special issue: from Quantum Mechanics to Force fields)
      DOI: 10.1063/1.5008887
    120. Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds covalent and non-covalent interactions
      R. Alvarez-Boto, J.-P. Piquemal, J. Contreras-Garcia, TCA, 2017,136, 139(ESCB1 conference special issue)
      DOI: 10.1007/s00214-017-2169-9
    121. Towards Scalable and Accurate Molecular dynamics using the SIBFA polarizable force field.
      L. Lagardère, L. El-Khoury, S. Nassem-Kahn, F. Aviat, N. Gresh, J.P. Piquemal, AIP Conf. Proc., 2017, 1906, 030018 (Proceedings of the ICCMSE 2017 conference)[PDF][HAL]
      DOI: 10.1063/1.5012297
    122. Tinker-HP: a Massively Parallel Molecular Dynamics Package for Multiscale Simulations of Large Complex Systems with Advanced Polarizable Force Fields. L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M. Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, N. Gresh, Y. Maday, P. Ren, J. W. Ponder, J.-P. Piquemal, Chem. Sci., 2018, 9, 956-972
      DOI: 10.1039/C7SC04531J
    123. Independent Gradient Model: a new approach for probing strong and weak interactions in molecules from wave function calculations
      C. Lefebvre, H. Khartabil, J-C. Boisson, J. Contreras-Garcia, J.-P. Piquemal, E. Henon, Chem. Phys. Chem., 2018, 19, 724-735
      DOI: 10.1002/cphc.201701325
    124. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids
      C. Zhang, C. Lu, Z. Jing, C. Wu, J-P. Piquemal, J. W. Ponder, P. Ren, J. Chem. Theory. Comput., 201814,  2084–2108
      DOI: 10.1021/acs.jctc.7b01169
    125. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in its Ferrous and Ferric Forms
      X. Wu , C. Clavaguera , L. Lagardère , J-P. Piquemal, A. de la Lande, J. Chem. Theory. Comput., 2018, 14, 2705–2720.
      DOI: 10.1021/acs.jctc.7b01128
    126. QM/MM simulations with the Gaussian Electrostatic Model, a density–based polarizable potential.
      H. Gökcan, E. Kratz, T. A. Darden, J.-P. Piquemal, G. A. Cisneros, J. Phys. Chem. Lett., 2018, 9 (11), pp 3062–3067.
      DOI: 10.1021/acs.jpclett.8b0141210.10
    127. Elucidating the phosphate binding mode of PBP: The Critical Effect of Buffer Solution.
      R. Qi, Z. Jing, C. Liu, J.-P. Piquemal, K. N. Dalby, P. Ren, J. Phys. Chem. B, 2018, 122(24):6371-6376.
      DOI: 10.1010.1021/acs.jpcb.8b03194
    128. A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms.
      B. Stamm, L. Lagardère, É. Polack, Yvon Maday, J.-P. Piquemal, J. Chem. Phys., 2018, 149 (12), 124103 [PDF]
      DOI: 10.1063/1.5044541
    129. Tinker 8: Software Tools for Molecular Design. J. A. Rackers, Z. Wang, C. Lu, M. L. Maury, L. Lagardère, M. J. Schnieders, J.-P. Piquemal, P. Ren, J. W. Ponder,  J. Chem. Theory. Comput., 201814 (10), 5273–5289 
      DOI: 10.1021/acs.jctc.8b00529

    130. How to make continuum solvation incredibly fast in a few simple steps: a practicle guide to the domain decomposition paradigm for the Conductor-like Screening Model.
      B. Stamm, L. Lagardère, G. Scalmani, P. Gatto, E. Cancès, J.-P. Piquemal, Y. Maday, B. Mennucci, F. Lipparini, Int. J. Quant. Chem., 2019, 119, e25669
      DOI: 10.1002/qua.25669
    131. Polarizable force fields for biomolecular simulations: Recent advances and applications
      Z. Jing, C. Liu, S. Y. Cheng, R. Qi, B. D. Walker, J.-P. Piquemal, P. Ren, Ann. Rev. Biophys, 2019, 48, 371-394
    132. Polarizable Molecular Dynamics Simulations of Ionic Liquids and Electrolytes. Dmitry Bedrov, Jean-Philip Piquemal, Oleg Borodin, Alexander D. MacKerell Jr, Benoît Roux, Christian Schröder,2019, in revision, to appear in Chem. Rev. 
      DOI: 10.10
    133. Massively parallel implementation of Steered Molecular Dynamics in Tinker-HP: polarizable versus non-polarizable simulations.
      F. Célerse, L. Lagardère, E. Derat, J.-P.Piquemal, J. Chem. Theory. Comput. 2019, in revision. 
      DOI: 10.26434/chemrxiv.7771112.v1
    134. To be updated.
      L. Lagardère, F. Aviat, J.-P. Piquemal, 2019, submitted (03/19)
      DOI: 10.10
    135.  AMOEBA+ Classical Potential for Modeling Molecular Interactions, 2019, C. Liu, J.-P. Piquemal, P. Ren, submitted (03/19)
      DOI: 10.26434/chemrxiv.7904450.v1
    136. Electronic polarization in Molecular Dynamics simulations and where it makes a difference.
      J. Melcr and J.-P. Piquemal, 2019, Front. Mol. Biosci. (Special Topic: multiscale moldeing from macromolecules to cell: opportunities and challenges of biomolecular simulations)
    137. Spectrometric and computational studies of the binding of HIV-1 integrase inhibitors to viral DNA extremities.
      L. El Khoury, K. El Hage, J.-P. Piquemal, S. Fermandjian, R. G. Maroun, N. Gresh, Z. Hobaika, 2019, submitted (03/19)
      DOI: 10.10
    138. Performances of the Tinker-HP Massively Parallel Molecular Dynamics Package: a living review.
      L. H. Jolly, A. Duran, J. W. Ponder, P. Y. Ren, L. Lagardère,  J.-P. Piquemal, LiveCoMS, 2019, 2, XX [PREPRINT]
      DOI: 10.10
    139. Towards Large Scale Hybrid QM/MM Dynamics of Complex Systems with Advanced Point Dipole Polarizable Embedding.
      D. Loco, L. Lagardère,G. A. Cisneros,G. Scalmani,M. Frisch, F. Lipparini, B. Menucci, J.-P. Piquemal, 2019,submitted (04/19)
      DOI: 10.10
    140. Many-body Charge Transfer Energy for Molecular dynamics.
      L. Lagardère, S. Naseem-Kahn, C. Narth, N. Gresh, J.-P. Piquemal, 2019.
      DOI: 10.10
    141. To be updated.
      S. Naseem-Kahn, N. Gresh, A. Misquitta, J.-P. Piquemal, 2019.
      DOI: 10.10
    142. To be updated.
      S. Naseem-Kahn, L. Lagardère, P. Ren, G. A. Cisneros, N. Gresh, J.-P. Piquemal, 2019.
      DOI: 10.10
    143. To be updated.
      F. Aviat, L. Lagardère, J.-P. Piquemal, 2019
      DOI: 10.10
    144. To be updated.
      C. Liu, J.-P. Piquemal, P. Ren, 2019, submitted
      DOI: 10.10

Other Publications (and children)

  • “Evaluation des interactions moléculaires dans des complexes bioinorganiques : du calcul ab initio au potentiel polarisable”.
    “Evaluation of molecular interactions in bioinorganic systems : from ab initio computations to polarizable force fields”.
    J-P Piquemal, Phd Thesis, 2004, Université Pierre et Marie Curie, Paris VI (France)
  • Eden V. Piquemal
    Chloé Piquemal* and J-P. Piquemal*, Big Book of Life, 2009, 5, 8.
  • Quelques apports méthodologiques à la modélisation classique/quantique de systèmes complexes: vers la réactivité en phase condensée. (Some methodological contributions to the classical/quantum modeling of complex systems: towards condensed phase reactivity)
    J-P Piquemal, Research Habilitation (HDR), 2009, Université Pierre et Marie Curie, Paris VI (France), defended on September 7 2009.
  • Aerin E. Piquemal
    Chloé Piquemal* and J-P. Piquemal*, Big Book of Life, 2014, 6, 27.