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ABSTRACT: We present a distilled multi-time-step (DMTS) strategy to
accelerate molecular dynamics simulations using foundation neural network
models. DMTS uses a dual-level neural network, where the target accurate
potential is coupled to a simpler but faster model obtained via a distillation
process. The 3.5 A cutoff distilled model is sufficient to capture the fast-
varying forces, i.e., mainly bonded interactions, from the accurate potential,
allowing its use in a reversible reference system propagator algorithm
(RESPA)-like formalism. The approach conserves accuracy, preserving both
static and dynamic properties, while enabling us to evaluate the costly model
only every 3 to 6 fs depending on the system. Consequently, large
simulation speedups over standard 1 fs integration are observed: nearly 4-
fold in homogeneous systems and 3-fold in large solvated proteins through
leveraging active learning for enhanced stability. Such a strategy is applicable

Distillation

eNNix

FENNIX-Bio1M

to any neural network potential and reduces the performance gap with classical force fields.

Neural Network potentials (NNPs)'~'* have emerged as
powerful tools to perform molecular dynamics (MD)
simulations, offering near-quantum mechanical accuracy at a
fraction of the computational cost of ab initio methods.
Presently, such models can be generalized up to Foundation
Models covering complete area of applications of molecular
dynamics ranging from Material Science to Chemistry, Biology,
and Drug Design.'°~*° By learning the potential energy surface
from reference quantum chemistry data, these models enable
simulations of large and complex molecular systems with
significantly improved fidelity compared to classical force
fields.”" However, this increase in accuracy comes at a cost:
NNPs are substantially more expensive to evaluate than
traditional empirical potentials. This limits their applicability in
terms of system sizes and long-time-scale simulations.

One of the primary bottlenecks of performing MD with ML
potentials lies in the time integration itself. The equations of
motion must be solved with a small time step, typically on the
order of 0.5 to 1 fs, to resolve high-frequency motions such as
bond vibrations. With computationally intensive ML models,
this results in a large number of expensive force evaluations,
further amplifying the overall simulation cost.

Multi-Time-Step (MTS) integrators™~>* offer a well-
established strategy to address this challenge. Originally
introduced in the context of classical molecular simulations,
MTS methods such as RESPA (Reference System Propagator
Algorithm)** exploit the separation of time scales between
different components of the forces to reduce the number of
expensive evaluations. By integration of fast-changing forces
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with a small time step and slow-changing ones with a larger
time step, significant performance gains can be achieved
without compromising accuracy. Having proven their useful-
ness for classical force fields simulations, MTS schemes have
been shown to be also applicable to Ab Initio MD (AIMD).*’
In the context of machine learning molecular simulations, few
works were reported in that direction.”*™*° Thus, MTS
schemes are not presently part of today’s NNP toolkit. Indeed,
in their case, force decomposition is not naturally given by
physical interactions and naive MTS implementations can be
plagued by various sources of instabilities, for example
resonances.”””" Still, MTS represents an important oppor-
tunity for foundation models, as the use of multiple neural
networks of differing complexity and inference cost could
enable efficient MTS schemes specifically tailored to ML
potentials.

In this work, we propose the first global MTS strategy for
neural network foundation models. As it relies on knowledge
distillation,** we term it DMTS for distilled multi-time-step. It
is applicable to any type of system and ensures stable long time
scale simulations with consequent speed gains. We leverage the
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Chart 1

Algorithm 1 MTS Integration Step with FENNIX Force Splitting
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RESPA formalism since it preserves symplecticity and time-
reversibility.”> We integrate this approach into the FeNNol
library,> a neural network framework for molecular
simulations that can be coupled to the scalable Deep-HP
machine learning interface®® present in the GPU-accelerated
Tinker-HP molecular dynamics package.”*>> Our method
associates a small, fast NNP obtained via distillation with the
FeNNix-Biol(M) foundation model,"’ leveraging the speed of
the former to reduce the frequency of the expensive
evaluations of the latter. We systematically evaluate the
method using various systems including liquid water, solvated
small molecules, and proteins in the condensed phase,
exploring different hyperparameter settings and model sizes
in order to design the fastest setup while maintaining accuracy.
Throughout, we compare the relative merits of both system-
specific and general-purpose models as a fast component for
the DMTS scheme. We also discuss the use of active learning
to systematically increase DMTS’s accuracy and performance.

Our results show that this hybrid RESPA-like scheme
enables substantial computational speed gains with limited loss
of accuracy, offering a practical route to scalable and efficient
Molecular Dynamics with foundation machine learning models
and NNPs in general.

In this work, we use two neural network potentials of
differing complexity to implement a MTS integration scheme.
In this scheme, the dynamics of a cheaper NNP is integrated
with a small time step (~1 fs) and is periodically corrected
(every 2 to 6 steps depending on the system) by the force
difference between the small NNP and a larger reference
model, here the FeNNix-Biol(M) model."” This enables us to
recover the dynamics of the larger NNP without evaluating its
forces at every time step, thus improving the computational
efficiency. In particular, we employ the BAOAB-RESPA
integration scheme”* outlined in Algorithm 1 (Chart 1), that
we implemented in the FeNNol library. For simulations in
Tinker-HP, we use the implementation described in ref 24 and
the Deep-HP interface™ for calling models.

In Algorithm 1 (Chart 1), x denotes the system’s
coordinates, v its velocities, At the outer time step, m the

mass, and ng,, the number of inner steps with time step

At/nge,. FENNIX;,.(x) denotes the reference FeNNix-
Biol(M) machine-learned force field evaluated at configu-
ration x and FENNIX_, (x) denotes the cheaper model. We
describe the neural network architectures and the distillation
strategies employed to train the FENNIX . model in the next
sections.

The reference model that we intend to accelerate
corresponds to the FeNNix-Biol(M) model, trained on a
broad and diverse data set. This model is based on a range-
separated equivariant transformer architecture, where close-
range and long-range interactions are described with different
spatial resolutions and dedicated attention heads. Its receptive
field is 11 A in total via two message-passing interactions.
Details about the full architecture are provided in ref 19. The
second, lighter weight model that is used in inner steps of the
RESPA scheme uses the same base architecture but with
reduced capacity and removes the long-range attention heads
in order to enable faster inference and lower computational
cost. Its receptive field is only 3.5 A (one message-passing
interaction), making it much more short-sighted and allowing
it to focus mostly on fast-varying “bonded” forces. The model
hyperparameters that we used in the following numerical
experiments are provided in Supporting Information.

We derive the FENNIX, .; model from the reference one
via a knowledge distillation procedure®>*® where the distilled
model is trained on data labeled with the FeNNix-Biol(M)
model instead of DFT. This ensures that the forces used in the
inner loop of the RESPA scheme are as close to the reference
ones as possible, minimizing the correction necessary to
recover the correct dynamics and thus the frequency of its
application. In practice, the small model comes in two flavors:
either (i) as an on-the-fly system-specific model or (ii) as a
generic model. We briefly describe here these two distillation
strategies. Specific details about the training parameters can be
found in Supporting Information.

B SYSTEM-SPECIFIC MODEL

For each system, a reference data set is generated by running a
short MD simulation (less than a nanosecond) using the
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reference model. For proteins and, more generally, for large
systems, a fragmentation strategy similar to the one proposed
in ref 15 was employed to reduce the computational burden
while retaining local structural information. We then evaluated
the energies and forces of the collected frames with the
reference model. The on-the-fly system-specific model was
then trained on this data set, resulting in a model about 10
times faster than FeNNix-Biol(M) with our current setup.

B GENERIC MODEL

In addition to system-specific distilled models, we also propose
a generic fast model trained on a chemically diverse data set,
enabling broader applicability and faster deployment in new
systems. To construct this transferable potential, we generated
a training set by evaluating FeNNix-Biol(M) on a subset of
conformations from the SPICE2 data set,”*® which contains a
wide variety of small organic molecules and biologically
relevant complexes. The generic model was trained on the
obtained data set, resulting in a transferable model that
captures general chemical patterns and can be reused across
systems. This generic model can be used directly in the inner
loop of our DMTS scheme or serve as an initialization point
for further fine-tuning on a target system. This offers a
compromise between generality and accuracy, especially when
system-specific data are limited or a rapid deployment is
desired.

The results obtained with the DMTS scheme for each of the
following experiments were compared with a single time step
(STS) integrator using the FeNNix-Biol(M) force field with a
time step of 1 fs. The STS scheme employs a BAOAB
Langevin integrator.””*" All simulations used a friction
coefficient of 1 ps™" for coupling to the Langevin thermostat.

B BULK WATER

First, to investigate the robustness of our models and
integrator, we performed a series of stability tests on a small
water box containing 648 atoms. Simulations were carried out
using the system-specific model and the generic model, with
external time steps ranging from 2 to 9 fs. For each
configuration, we monitored dynamic and thermodynamic
observables, including diffusion coeflicients, kinetic and
potential energies, and temFerature. Diffusion coefficients
were computed using Tinker*' with the Einstein formula. The
stability of the trajectory was evaluated over the full course of
the 2 ns simulation with qualitative indicators reported in
Table 1. Additional tests were performed with hydrogen mass
repartitioning (HMR),"” enabling larger time steps.

At a short external time step (2 fs), both specific and generic
models produced stable trajectories with diffusion coefficients
and temperatures close to the reference STS values. At 3 fs,
simulations remained stable, although the generic and system-
specific models displayed a marked increase in both diffusion
coefficient and temperature, suggesting the onset of integration
artifacts.

The introduction of HMR enables stable simulations up to 6
fs, with dynamic and thermodynamic properties remaining
within reasonable agreement between the STS and DMTS
integrator for both models. However, at 7 fs and beyond,
instabilities systematically occurred, reflected by divergent
values in Table 1 or nonphysical increases in diffusion and
temperature. These results highlight that HMR provides a
substantial extension of the accessible time step, effectively

Table 1. Stability Tests Performed on a Water Box of 648
Atoms Using Both the System-Specific and Generic Models
at Various Integration Time Steps, With and without
Hydrogen Mass Repartitioning (HMR)“

Diffusion Temperature
System Generic System Generic
STS 221 £+ 0.15 300.1 + 9.6
2 fs 245 £ 017 206 £0.05 3005 + 9.6 300.2 + 9.6
3fs 230 £ 006 266 +£067 3152+ 10.6  333.3 + 122
3fs 227 £ 0.14 2.05 = 0.18 300.1 £ 9.5 299.9 £ 9.5
HMR
4 fs 211 £ 019 204 £024 3008 + 9.5 3034 £ 99
HMR
Sfs 230 £019 216 £025  302.7 + 9.8 304.1 £ 10.2
HMR
6 fs 220 £ 030 264 +£047 3045+ 9.7 305.9 £ 9.9
HMR
7 fs 3.32 £ 0.04 327.5 £ 11.1
HMR

“Diffusion coefficients (in 1 X 107 cm?/s) and average temperatures
(K) are reported with associated standard deviations. Values are
averaged over 2 ns trajectories. Instabilities prevented completion of
simulations beyond 3 fs without HMR and beyond 7 fs with HMR.

doubling the stability range compared with standard masses.
Nevertheless, care must be taken to avoid excessive increases,
as instabilities rapidly emerge beyond 6 fs. In practice, time
steps of 2—3 fs without HMR and up to 5—6 fs with HMR
appear to offer the most reliable compromise between
computational efficiency, stability, and physical accuracy.

It is well documented that limits in the larger time step
usable in the context of MTS schemes in molecular dynamics
are related to the coupling of this largest time step with the
highest-frequency vibrational modes involved in the system:
the so-called resonance effects.””*"*~* A simple diagnostic
can be made to assess these aspects by considering the velocity
autocorrelation spectra in this setup. Figure 1 illustrates this in
the context of bulk water, where we see the artifacts produced
by the periodic MTS force correction (annotated in the inset
of Figure 1) progressively coupling with the overtone of the
O—H stretching mode (around 7500 cm™" or 4000 cm ™" with
HMR) as the outer time step increases. This diagnostic
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Figure 1. Average velocity autocorrelation spectra of hydrogen atoms
in bulk water. The reference single time step (STS) simulation is
shown in black. Distilled multi-time-step (DMTS) simulations are
shown for different integration time steps (2, 3, 4, S, and 6 fs), with
corresponding heavy-mass repartitioning (HMR) variants represented
by dashed lines of the same color. Inset shows zooms in high
frequency regions containing MTS integration artifacts.
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confirms the limits of the outer time step to 5 fs with hydrogen
mass repartitioning and 2—3 fs without.

We further assess the robustness of our approach by
computing the radial distribution function of a larger water box
composed of 4800 atoms. As shown in Figure 2, the DMTS
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Figure 2. Radial distribution function, g(r), as a function of the
distance (r) in A. The solid blue curve corresponds to the DMTS
simulation with the on-the-fly system-specific model, and the orange
one corresponds to DMTS with the small generic model. Both DMTS
simulations used an inner time step of 1 fs and an outer time step of 5
fs. The dotted green curve corresponds to the reference STS
simulation.

simulations (with both generic and system-specific models)
with an outer time step of S fs and HMR correctly reproduce
the STS results within the statistical uncertainties. Overall, with
this setup, we obtained a speedup of around 4 compared to
STS with a 1 fs time step for bulk water simulations
corresponding to an increase from 6.59 to 25.03 ns/day (see
Table 2).

B SOLVATED MOLECULES

To further assess the accuracy of the proposed DMTS scheme,
we turned to small solvated molecules. We observed stability

Table 2. Maximum Performance (ns/day) on Small (648
atoms) and Large (4800 atoms) Water Boxes Obtained on a
Single NVIDIA A100 GPU Using Both the System-Specific
and Generic Models at Various Integration Time Steps, with
and without Hydrogen Mass Repartitioning (HMR)

Small Large
System Generic System Generic

STS 38.07 6.59

2 fs 48.05 40.58 11.61 1091
3fs 67.81 57.57 16.26 15.26
4 fs HMR 85.92 71.73 20.57 19.22
S fs HMR 98.69 84.85 25.03 22.81
6 fs HMR 117.99 95.67 27.52 26.03

limits similar to those for bulk water for the five molecules that
we tested: ethanol, benzene, trimethylamine, diethylsulfide,
and acetic acid. We then evaluated the hydration free energies
(HFEs) of these (as well as those of water). Calculations were
performed leveraging the alchemical Lambda-ABF* method,
employing both system-specific models trained on-the-fly and a
generic small foundation model. All simulations were carried
out using the same DMTS integration scheme described
above, with an inner time step of 1 fs and an outer time step of
4 fs and HMR. For benzene DMTS simulations using the
generic model, we needed to reduce the outer time step to 3 fs
to avoid instabilities. This confirms that the system specific
model is more robust than the generic one.

Figure 3 shows the predicted HFEs compared to the STS
reference values. The system-specific model achieved a mean
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Figure 3. Hydration free energy of small molecules (water, ethanol,
benzene, trimethylamine, diethyl sulfide, and acetic acid) using
DMTS with system-specific model (blue points) and with small
generic model (orange points) compared to the STS result. MAE is
0.091 and 0.103 kcal/mol, RMSE is 0.124 and 0.138 kcal/mol, and R*
is 0.996 and 0.995 for the system-specific model and the generic
model, respectively.

absolute error (MAE) of 0.091 kcal/mol, a root-mean-square
error (RMSE) of 0.124 kcal/mol, and a coefficient of
determination (R*) of 0.996. The generic foundation model
also showed good performance, with an MAE of 0.103 kcal/
mol, an RMSE of 0.138 kcal/mol, and an R? of 0.995.

These results demonstrate that the DMTS scheme preserves
high accuracy in free energy calculations while benefiting from
a significant reduction in the computational cost. They also
show that both system-specific and generic models are capable
of closely reproducing STS-level results.

B PROTEIN-LIGAND COMPLEXES

To validate our scheme on a biologically relevant system, we
performed a 20 ns NVT molecular dynamics simulation of the
lysozyme—phenol complex (PDB ID: 4I7L) in explicit water.
Because of the chemical diversity of this system, we did not
train a system-specific model from scratch. We thus first
assessed the ability of the generic model to handle the system
and then showed that its performance can be improved via
active-learning-driven fine-tuning,

Using an inner time step of 1.75 fs and an outer time step of
3.5 fs with HMR, we obtained stable simulations over 20 ns

https://doi.org/10.1021/acs.jpclett.5c03720
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with the generic model while preserving the protein’s structure
and the ligand’s binding mode as shown in Figure 5. Note that
simulations with a 4 fs outer time step and HMR (which were
stable for homogeneous systems) displayed instabilities after 2
ns. The close similarity of the velocity autocorrelation spectra
(Figure 4a) between STS and DMTS indicates that these
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Figure 4. (a) Average velocity autocorrelation spectra of hydrogen
atoms for the phenol—lysozyme complex with HMR, comparing STS
with MTS 3 and 4 fs. Inset shows zoom in high frequency regions
containing MTS integration artifacts. (b) Distribution (in log-scale)
of the norm of the force differences for the generic model with respect
to the FENNIX-Biol(M) reference model. The distributions are
estimated over the first 500 frames of a phenol—lysozyme in water
simulation.

instabilities are not due to the resonance phenomena described
above. They instead originate from the presence of “holes” in
the potential energy surface of the small model, yielding large
differences between its forces and the target ones. This is
illustrated in Figure 4b showing the distribution of the norm of
the difference of forces between FeNNix-Biol(M) and the
distilled model along a STS trajectory of the protein—ligand
system. We observed a dense distribution of values close to 0
kcal/mol/A and a long-tailed distribution starting from 150
kcal/mol/A. The latter is associated with large nonphysical
force discrepancies yielding the infrequent instabilities that we
observe in the DMTS simulation.

To address this limitation, we introduced two comple-
mentary strategies:

Small message-passing model. First, we explored enriching
the small model architecture with explicit message passing. The
intuition is that a more expressive model, with more
parameters and deeper local information flow, should exhibit

fewer “holes” in the potential energy surface, thereby reducing
the occurrence of pathological configurations. This strategy
proved effective: with a single message passing layer, we
obtained stable 20 ns simulations using 1 fs/4 fs inner/outer
time steps, confirming the improved robustness of the small
model (see Figure S2 in Supporting Information). However,
the added architectural complexity significantly increased the
inference cost, making the approach less attractive for large-
scale production simulations (going from 6.54 ns/day for the
generic model to 5.95 ns/day for the message-passing model).
Improving the small model via active learning. We
therefore investigated an alternative strategy that preserved
the simplicity of the original model: active-learning-driven fine-
tuning. In this approach, we designed an active-learning
procedure that automatically detects frames and atoms in
which the force difference exceeds an unrealistic threshold of
150 kcal/mol/A. For such frames, the integrator temporarily
reverts to the STS integrator, and local clusters centered on the
problematic atoms are added to an adaptive fine-tuning data
set. In total, curating the final data set, required approximately
400 ps of simulation (see details in Supporting Information).
The generic small model was then refined on this curated data
set, systematically improving its robustness in regions of
configuration space previously associated with instabilities.
Remarkably, this refinement procedure achieved, without
increasing the model’s complexity, stable 20 ns simulations
using up to 2 fs/4 fs inner/outer time steps. The protein’s
structure and the ligand’s binding mode were preserved as
shown in Figure S. Furthermore, we show in the Supporting
Information (Figure S1) that the potential energy is stable
along the whole 20 ns simulations in all cases. With this
configuration, we reached a production speed of 7.45 ns/day,
corresponding to a 2.92 ns speed increase compared to the
STS simulations, strongly accelerating production simulations
with biological systems. This demonstrates that targeted fine-
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Figure 5. Time evolution of the protein backbone RMSD and the
ligand’s Distance to Bound Configuration (DBC)** during a 20 ns
simulation of the lysozyme—phenol complex in water. Results
obtained with the implemented MTS integrator (solid lines) are
compared to those from a reference STS simulation (dotted lines).
DMTS simulations use either the generic or active learning models
combined with the FeNNix-Biol(M) potential with an internal time
step of 1.75 fs and an external time step of 3.5 fs with HMR for the
generic model and an internal/external time step of 2/4 fs with HMR
for the active learning model.
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tuning can rival the stability gains of more expressive
architectures while retaining a significantly lower inference
cost. Looking ahead, this adaptive strategy could be further
enhanced through more sophisticated active-learning
schemes.””""!

We have introduced a practical and efficient Distilled
Multiple Time Step (DMTS) scheme tailored to machine-
learned force fields, enabling significant acceleration of
molecular dynamics simulations without compromising accu-
racy for both static and dynamic properties. Our approach,
based on a RESPA-like scheme, couples a fast, distilled neural
network model with the accurate FeNNix-Biol(M) reference
potential. We demonstrated two complementary distillation
strategies: (i) on-the-fly system-specific model distillation and
(ii) the use of a lightweight transferable model for broader
applicability.

We achieved substantial speed gains (up to 4 in mostly
homogeneous systems (bulk water and solvated small
molecules) and 2.92 in large protein—ligand complexes)
while preserving key physical observables such as radial
distribution functions, hydration free energies, diffusion
coefficients, and protein—ligand structural properties. Note
that this is a first estimation of the computational gains, as the
code has yet to be optimized further to handle the dual-level
approach more efficiently. All in all, our approach allows us to
reach above 7 ns of simulation per day on a single A100 GPU
for a realistic protein—ligand complex while preserving the ab
initio-like accuracy of the FeNNix-Biol(M) model. In
combination with well-established accelerated sampling
schemes,” ™" this enabled truly large-scale simulations with
foundation neural network potentials.

Future work will focus on expanding the applicability of this
approach through two main avenues. First, randomized time
stepping could be explored to further increase the effective
time step, while allowing for controlled velocity rescaling as
proposed in stochastic RESPA variants, ie., JUMP integra-
tors.*® Second, combining the fragment-based active-learning
strategy with the generic message passing architecture offers a
promising route forward. An active-learning-driven message-
passing model could selectively refine unstable regions on the
fly, potentially enabling an inner time step beyond 4 fs while
offsetting the higher inference cost of the message passing.
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